Skip to main content
Log in

Self-diffusion in liquid indium and tin

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Self-diffusion measurements have been made on liquid indium and tin over a wide range of temperatures, and a small but systematic deviation from the ordinary Arrhenius equation has been detected. After the customary discussion of the Stokes-Einstein and Eyring equations, new expressions are worked out in the quasi crystalline picture of the liquid state following the solid state treatment of the diffusion processes. It is then shown how the deviations from the Arrhenius equation are accounted for by a direct interchange mechanism of nearest neighbours, due to a ring movement of two atoms.

Riassunto

Sono state effettuate misure di autodiffusione in stagno ed indio liquidi in un largo intervallo di temperatura, ed è stata rilevata una piccola ma sistematica deviazione dalla ordinaria equazione di Arrhenius. Dopo la usuale discussione in termini delle equazioni di Stokes-Einstein e di Eyring, sono ricavate nuove espressioni nell’approssimazione quasi cristallina dello stato liquido, seguendo l’analoga trattazione dei processi di diffusione nello stato solido. Viene allora dimostrato come della deviazione dalla equazione di Arrhenius si possa rendere conto mediante un meccanismo di scambio di atomi vicini, con un moto ad anello di due atomi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Careri, A. Paoletti andF. Salvetti:Nuovo Cimento,11, 399 (1954).

    Article  Google Scholar 

  2. G. Careri andA. Paoletti:Suppl. Nuovo Cimento,1, 161 (1955);Nuovo Cimento,1, 517 (1955).

    Article  Google Scholar 

  3. This is in agreement with a recent paper byG. I. Taylor:Proc. Phys. Soc.,67, 557 (1954).

    Article  Google Scholar 

  4. Spectroscopically pure lin has been employed. Manufactured by Johnson, Matthey & Co.

  5. Obtained by the Atomic Energy Res. Establishment, Harwell, England.

  6. R. R. Hoffmann:Journ. Chem. Phys.,20, 1567 (1952).

    Article  ADS  Google Scholar 

  7. C. Zener:Imperfections in nearly perfect crystals (New York, 1952), p. 289.

  8. D. Lazarus:Phys. Rev.,93, 973 (1954).

    Article  ADS  Google Scholar 

  9. R. M. Barrer:Trans. Farad. Soc.,37, 590 (1941).

    Article  Google Scholar 

  10. R. H. Fowler andE. A. Guggenheim:Statistical Thermodynamics (Cambridge, 1939), p. 495.

  11. O. K. Rice:Phase transformations in Solids (New York, 1941), p. 229.

  12. H. G. Drickamer andR. E. Eckert:Journ. Chem. Phys.,20, 13 (1952).

    Article  ADS  Google Scholar 

  13. For the γ values of Eq. (3), seeG. J. Dienes:Phys. Rev.,89, 185 (1953).

    Article  ADS  Google Scholar 

  14. H. Hendus:Zeits. f. Naturfor.,2, 505 (1947).

    ADS  Google Scholar 

  15. R. P. Feynmann:Progress in low Temperature Physics, I (Amsterdam, 1955), p. 17.

  16. J. De Boer andE. G. Cohen:Physica,21, 79 (1955).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Careri, G., Paoletti, A. Self-diffusion in liquid indium and tin. Nuovo Cim 2, 574–591 (1955). https://doi.org/10.1007/BF02826516

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02826516

Navigation