Skip to main content
Log in

The deep investigation of annealing temperature and gamma irradiation on Al2O3/Yb2O3/Al2O3/n-Si (100) MOS-like structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report the fabrication of Al/Al2O3/Yb2O3/Al2O3/n-Si (100) charge trapping memory device by RF magnetron sputtering technique. The structural and electrical properties of high-dielectric (k) materials at various annealing temperature have been systematically investigated. XRD analysis confirm that the thin fims were amorphous after annealing temperature above 200 °C. AFM shows that the root mean squared value increased with an increase in the annealing temperature. Electrical performance tests showed that annealing at lower temperature can lead to an improvement of electrical properties as shown by an increase in the memory window (ΔVfb) and the capacitance value in the accumulation region. The Cs-137 gamma irradiation response on the device has also been studied at different doses of 4 Gy to 128 Gy with dose rate 491 Gy/h. The C–V curves slightly shifted towards the negative voltage side due to the generation of net positive oxide trapped charges(ΔNot) during radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Code availability

Not applicable.

References

  1. A. Das, B.N. Chowdhury, R. Saha, S. Sikdar, S. Bhunia, S. Chattopadhyay, Ultrathin vapor-liquid-solid grown titanium dioxide-II film on bulk GaAs substrates for advanced metal-oxide-semiconductor device applications. IEEE Trans. Electron Devices 65(4), 1466–1472 (2018). https://doi.org/10.1109/TED.2018.2802490

    Article  CAS  Google Scholar 

  2. H. Mao et al., MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron Mater. 6(1), 1–8 (2020). https://doi.org/10.1002/aelm.201900493

    Article  CAS  Google Scholar 

  3. H. Liu, M. Cui, C. Dang, W.W. Wen, X. Wang, L. Xie, Two-dimensional WSe2/organic acceptor hybrid nonvolatile memory devices based on interface charge trapping. ACS Appl. Mater. Interfaces 11(37), 34424–34429 (2019). https://doi.org/10.1021/acsami.9b11998

    Article  CAS  Google Scholar 

  4. J. Wen et al., Direct charge trapping multilevel memory with graphdiyne/MoS2 Van der Waals heterostructure. Adv. Sci. 8(21), 1–8 (2021). https://doi.org/10.1002/advs.202101417

    Article  CAS  Google Scholar 

  5. T. Jung, J. Shin, C. Shin, Impact of depolarization electric-field and charge trapping on the coercive voltage of an Si:HfO2-based ferroelectric capacitor. Semicond. Sci. Technol. 36(1), 1–7 (2020). https://doi.org/10.1088/1361-6641/abbf0f

    Article  CAS  Google Scholar 

  6. W. Xu et al., Electronic structure and charge-trapping characteristics of the Al2O3-TiAlO-SiO2 gate stack for nonvolatile memory applications. Nanoscale Res. Lett. 12(1), 11–14 (2017). https://doi.org/10.1186/s11671-017-2040-x

    Article  CAS  Google Scholar 

  7. J. Liu, J. Lu, B. Xu, Y. Xia, J. Yin, Z. Liu, Al2O3–Cu2O composite charge-trapping nonvolatile memory. J. Mater. Sci. 28(1), 928–933 (2017). https://doi.org/10.1007/s10854-016-5609-8

    Article  CAS  Google Scholar 

  8. N. Gary, S. Teng, A. Tiwari, H. Yang, Room-temperature solid-state radiation detectors based on spintronics. IEEE Nucl. Sci. Symp. Conf. Rec. (2012). https://doi.org/10.1109/NSSMIC.2012.6551949

    Article  Google Scholar 

  9. J. Zhu, K. Li, Y. Zhang, A high-k composite of TiO2–ZrO2 for charge trapping memory device with a large memory window under a low voltage. J. Mater. Sci. 32(19), 24429–24435 (2021). https://doi.org/10.1007/s10854-021-06918-y

    Article  CAS  Google Scholar 

  10. Z.H. Fan, M. Zhang, L. Chen, Q.Q. Sun, D.W. Zhang, “ReS2 based high-k dielectric stack charge-trapping and synaptic memory. Jpn. J. Appl. Phys. 59(SG), 1–6 (2020). https://doi.org/10.35848/1347-4065/ab7279

    Article  CAS  Google Scholar 

  11. D.H. Kim, J.W. Park, C.O. Kim, H. Chung, S.H. Choi, D. Lim, Effect of thermal annealing on nonvolatile memory structures containing a high-k la2O3 charge-trapping layer. J. Korean Phys. Soc. 58(2), 264–269 (2011). https://doi.org/10.3938/jkps.58.264

    Article  CAS  Google Scholar 

  12. D. Spassov et al., Electrical characteristics of multilayered HfO2-Al2O3 charge trapping stacks deposited by ALD. J. Phys. (2016). https://doi.org/10.1088/1742-6596/764/1/012016

    Article  Google Scholar 

  13. M. Li et al., Total ionizing dose effects of 55-nm silicon-oxide-nitride-oxide-silicon charge trapping memory in pulse and DC modes. Chin. Phys. Lett. (2018). https://doi.org/10.1088/0256-307X/35/7/078502

    Article  Google Scholar 

  14. C. Mahata et al., Charge trapping characteristics of sputter-AlOx/ALD Al2O3/Epitaxial-GaAs-based non-volatile memory. J. Mater. Sci. 32(4), 4157–4165 (2021). https://doi.org/10.1007/s10854-020-05157-x

    Article  CAS  Google Scholar 

  15. P. Han et al., Outstanding memory characteristics with atomic layer deposited Ta 2 O 5 /Al 2 O 3 /TiO 2 /Al 2 O 3 /Ta 2 O 5 nanocomposite structures as the charge trapping layer. Appl Surf Sci 467–468(October 2018), 423–427 (2019). https://doi.org/10.1016/j.apsusc.2018.10.197

    Article  CAS  Google Scholar 

  16. Y. Shen et al., A Gd-doped HfO2 single film for a charge trapping memory device with a large memory window under a low voltage. RSC Adv. 10(13), 7812–7816 (2020). https://doi.org/10.1039/d0ra00034e

    Article  CAS  Google Scholar 

  17. L. Jin et al., Effect of high temperature annealing on the performance of MANOS charge trapping memory. Sci. China Technol. Sci. 55(4), 888–893 (2012). https://doi.org/10.1007/s11431-011-4703-7

    Article  CAS  Google Scholar 

  18. C.H. Kao, C.C. Chen, C.J. Lin, Comparison of gadolinium oxide trapping layers in flash memory applications. Vacuum 118, 74–79 (2015). https://doi.org/10.1016/j.vacuum.2015.02.033

    Article  CAS  Google Scholar 

  19. J. Molina, R. Ortega, W. Calleja, P. Rosales, C. Zuniga, A. Torres, MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing. Mater. Sci. Eng. B 177(16), 1501–1508 (2012). https://doi.org/10.1016/j.mseb.2012.02.029

    Article  CAS  Google Scholar 

  20. H.J. Kim, S.Y. Cha, D.J. Choi, Memory characteristics of Al2O3/La2O3/Al2O3 multi-layer films with various blocking and tunnel oxide thicknesses. Mater. Sci. Semicond. Process. 13(1), 9–12 (2010). https://doi.org/10.1016/j.mssp.2010.01.002

    Article  CAS  Google Scholar 

  21. N. Nikolaou et al., The effect of oxygen source on atomic layer deposited Al2O3 as blocking oxide in metal/aluminum oxide/nitride/oxide/silicon memory capacitors. Thin Solid Films 533, 5–8 (2013). https://doi.org/10.1016/j.tsf.2012.10.137

    Article  CAS  Google Scholar 

  22. S. Rui Cao et al., Study of γ-ray radiation influence on SiO2/HfO2/Al2O3/HfO2/Al2O3 memory capacitor by C-V and DLTS. J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01450-6

    Article  Google Scholar 

  23. G. Arun Kumar Thilipan A. Rao, Influence of power on the physical and electrical properties of magnetron sputtered gadolinium oxide thin films for MOS capacitors. Mater. Sci. Semicond. Process 121(Aug 2020), 105408 (2021). https://doi.org/10.1016/j.mssp.2020.105408

    Article  CAS  Google Scholar 

  24. A. Mutale, S.C. Deevi, E. Yilmaz, Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors. J. Alloys Compd. 863, 158718 (2021). https://doi.org/10.1016/j.jallcom.2021.158718

    Article  CAS  Google Scholar 

  25. T.M. Pan, W.S. Huang, Physical and electrical characteristics of a high-k Yb2O3 gate dielectric. Appl. Surf. Sci. 255(9), 4979–4982 (2009). https://doi.org/10.1016/j.apsusc.2008.12.048

    Article  CAS  Google Scholar 

  26. T.M. Pan, J.S. Jung, X.C. Wu, Effect of postdeposition annealing on the structural and electrical characteristics of Yb2 TiO5 charge trapping layers. Appl. Phys. Lett. 96(16), 3–6 (2010). https://doi.org/10.1063/1.3402774

    Article  CAS  Google Scholar 

  27. B. Morkoç, A. Kahraman, E. Yılmaz, Effects of the oxide/interface traps on the electrical characteristics in Al/Yb2O3/SiO2/n-Si/Al MOS capacitors. J. Mater. Sci. 32(7), 9231–9243 (2021). https://doi.org/10.1007/s10854-021-05588-0

    Article  CAS  Google Scholar 

  28. A. Panneerselvam, K.S. Mohan, R. Marnadu, J. Chandrasekaran, The deep investigation of structural and opto-electrical properties of Yb2O3 thin films and fabrication of Al/ Yb2O3/p-Si (MIS) Schottky barrier diode. J. Solgel Sci. Technol. 102(3), 597–613 (2022). https://doi.org/10.1007/s10971-021-05683-y

    Article  CAS  Google Scholar 

  29. P. Loiko et al., Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2SiO4 nanocrystals and doped with Er2O3 and Yb2O3: part I. The role of heat-treatment. J. Lumin. 202, 47–56 (2018). https://doi.org/10.1016/j.jlumin.2018.05.010

    Article  CAS  Google Scholar 

  30. Y. Sohn, Yb2O3 nanowires, nanorods and nano-square plates. Ceram. Int. 44(3), 3341–3347 (2018). https://doi.org/10.1016/j.ceramint.2017.11.118

    Article  CAS  Google Scholar 

  31. L. Hao, G. He, L. Qiao, Z. Fang, B. Yao, Interface optimization and modulation of leakage current conduction mechanism of Yb2O3/GaSb MOS capacitors with (NH4)2S solutions passivation. IEEE Electron Device Lett. 42(2), 140–143 (2021). https://doi.org/10.1109/LED.2020.3048014

    Article  CAS  Google Scholar 

  32. L. Hao, G. He, Z. Fang, D. Wang, Z. Sun, Y. Liu, Modulation of the microstructure, optical and electrical properties of sputtering-driven Yb2O3 gate dielectrics by sputtering power and annealing treatment. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145273

    Article  Google Scholar 

  33. H. Saghrouni, A. Cherif, L. Beji, Electrical and dielectric properties of a Dy2O3 MOS capacitor. J. Electron Mater. 51(3), 1250–1260 (2022). https://doi.org/10.1007/s11664-021-09391-9

    Article  CAS  Google Scholar 

  34. V. Singh, S.K. Sharma, D. Kumar, R.K. Nahar, Study of rapid thermal annealing on ultra thin high-k HfO2 films properties for nano scaled MOSFET technology. Microelectron Eng. 91, 137–143 (2012). https://doi.org/10.1016/j.mee.2011.09.005

    Article  CAS  Google Scholar 

  35. S. Li et al., Annealing effect and leakage current transport mechanisms of high k ternary GdAlOx gate dielectrics. J. Alloys Compd. 791, 839–846 (2019). https://doi.org/10.1016/j.jallcom.2019.03.254

    Article  CAS  Google Scholar 

  36. U. Sharma et al., Pulsed laser deposited Dy and Ta doped hafnium-zirconium oxide thin films for the high-k applications. Phys. Scr. 98(5), 055517 (2023). https://doi.org/10.1088/1402-4896/accc5e

    Article  Google Scholar 

  37. X.D. Huang, R.P. Shi, P.T. Lai, Charge-trapping characteristics of fluorinated thin ZrO2 film for nonvolatile memory applications. Appl Phys Lett. (2014). https://doi.org/10.1063/1.4873388

    Article  Google Scholar 

  38. J.S. Bi, Y.N. Xu, G.B. Xu, H.B. Wang, L. Chen, M. Liu, Total ionization dose effects on charge-trapping memory with Al2O3/HfO2/ Al2O3 trilayer structure. IEEE Trans. Nucl. Sci. 65(1), 200–205 (2018)

    Article  CAS  Google Scholar 

  39. L.B. Chang, A. Das, R.M. Lin, S. Maikap, M.J. Jeng, S.T. Chou, An observation of charge trapping phenomena in GaN/AlGaN/Gd2O3/Ni-Au structure. Appl. Phys. Lett. 98(22), 2009–2012 (2011). https://doi.org/10.1063/1.3596382

    Article  CAS  Google Scholar 

  40. A. Mutale, S.C. Deevi, E. Yilmaz, Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158718

    Article  Google Scholar 

  41. T.-M. Pan, W.-S. Huang, Effects of oxygen content on the structural and electrical properties of thin Yb2O3 gate dielectrics. J. Electrochem. Soc. 156(1), G6 (2009). https://doi.org/10.1149/1.3005993

    Article  CAS  Google Scholar 

  42. D.A. Aldemir, A.B. Bayram, M. Kaleli, The comparison of structural and electro-optical properties of (In, Yb)2O3 thin films with those of In2O3 and Yb2O3 thin films. J. Mater. Sci. (2023). https://doi.org/10.1007/s10854-023-09874-x

    Article  Google Scholar 

  43. K.S. Mohan, A. Panneerselvam, R. Marnadu, J. Chandrasekaran, M. Shkir, A. Tataroğlu, A systematic influence of Cu doping on structural and opto-electrical properties of fabricated Yb2O3 thin films for Al/Cu- Yb2O3 /p-Si Schottky diode applications. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108646

    Article  Google Scholar 

  44. T.M. Pan, C.H. Chen, F.H. Chen, Y.S. Huang, J.L. Her, Structural and electrical characteristics of Yb2O3 and YbTixOy gate dielectrics for α-InGaZnO thin-film transistors. IEEE/OSA J. Disp. Technol. 11(3), 248–254 (2015). https://doi.org/10.1109/JDT.2014.2380453

    Article  CAS  Google Scholar 

  45. T.M. Pan, T.Y. Yu, Comparison of the structural properties and electrical characteristics of Pr2O3, Nd2O3 and Er2O3 charge trapping layer memories. Semicond. Sci. Technol. (2009). https://doi.org/10.1088/0268-1242/24/9/095022

    Article  Google Scholar 

  46. Y.J. Acosta-Silva, R. Castañedo-Perez, G. Torres-Delgado, A. Méndez-López, O. Zelaya-Ángel, Effect of annealing temperature on structural, morphological and optical properties of CeO2 thin films obtained from a simple precursor solution. J. Solgel Sci. Technol. 82(1), 20–27 (2017). https://doi.org/10.1007/s10971-016-4286-7

    Article  CAS  Google Scholar 

  47. M.L. Lee et al., Physical and electrical properties of flash memory devices with nickel oxide(NiO2) charge trapping layer. Vacuum 140, 47–52 (2017). https://doi.org/10.1016/j.vacuum.2017.02.009

    Article  CAS  Google Scholar 

  48. C.-H. Kao, H. Chen, H.W. Chang, C.S. Chuang, Electrical and material characterizations of HfTiO4 flash memory devices with post-annealing. J. Vac. Sci. Technol. A 29(6), 06B102 (2011). https://doi.org/10.1116/1.3653970

    Article  CAS  Google Scholar 

  49. T. M. Pan, F. H. Chen, and J. S. Jung, (2010) A high-k Tb2 TiO5 nanocrystal memory. Appl Phys Lett, doi: https://doi.org/10.1063/1.3354027.

  50. C. Lee et al., Nitrogen incorporation engineering and electrical properties of high-k gate dielectric (HfO2 and Al2O3) films on Si (100) substrate. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22(4), 1838 (2004). https://doi.org/10.1116/1.1775203

    Article  CAS  Google Scholar 

  51. C.H. Kao, C.C. Chen, C.H. Huang, C.Y. Huang, C.J. Lin, J.C. Ou, Investigation of Ti-doped Gd 2O 3 charge trapping layer with HfO 2 blocking oxide for memory application. Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2011.11.059

    Article  Google Scholar 

  52. B.H. Lee, L. Kang, R. Nieh, W.J. Qi, J.C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76(14), 1926–1928 (2000). https://doi.org/10.1063/1.126214

    Article  CAS  Google Scholar 

  53. B. Morkoc, A. Kahraman, E. Yilmaz, Post-deposition annealing effect on the structural and electrical properties of ytterbium oxide as an alternative gate dielectric. Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.126875

    Article  Google Scholar 

  54. P. Liu et al., Impact of O2post oxidation annealing on the reliability of SiC/SiO2MOS capacitors. Chinese Phys. B (2021). https://doi.org/10.1088/1674-1056/abf644

    Article  Google Scholar 

  55. Z. Luo, C. Wan, Z. Jin, H. Xu, Effects of sequential annealing in low oxygen partial-pressure and NO on 4H-SiC MOS devices. Semicond. Sci. Technol. (2021). https://doi.org/10.1088/1361-6641/abd45c

    Article  Google Scholar 

  56. H.N. Masten, J.D. Phillips, R.L. Peterson, Effects of high temperature annealing on the atomic layer deposited HfO2/β-Ga2O3(010) interface. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0070105

    Article  Google Scholar 

  57. A.G. Khairnar, A.M. Mahajan, Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 15, 24–28 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.09.010

    Article  CAS  Google Scholar 

  58. H. Guan, C.Y. Jiang, S.X. Wang, Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor. Chinese Phys. B (2020). https://doi.org/10.1088/1674-1056/ab8a34

    Article  Google Scholar 

  59. A. Kahraman, H. Karacali, E. Yilmaz, Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154171

    Article  Google Scholar 

  60. H.J. Quah, K.Y. Cheong, Z. Hassan, Z. Lockman, F.A. Jasni, W.F. Lim, Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon. J. Electrochem. Soc. 157(1), H6 (2010). https://doi.org/10.1149/1.3244214

    Article  CAS  Google Scholar 

  61. S.K. Chuah, K.Y. Cheong, Z. Lockman, Z. Hassan, Effect of post-deposition annealing temperature on CeO2 thin film deposited on silicon substrate via RF magnetron sputtering technique. Mater. Sci. Semicond. Process 14(2), 101–107 (2011). https://doi.org/10.1016/j.mssp.2011.01.007

    Article  CAS  Google Scholar 

  62. J. Gao, G. He, J.W. Zhang, B. Deng, Y.M. Liu, Annealing temperature modulated interfacial chemistry and electrical characteristics of sputtering-derived HfO2/Si gate stack. J. Alloys Compd. 647, 322–330 (2015). https://doi.org/10.1016/j.jallcom.2015.05.157

    Article  CAS  Google Scholar 

  63. J.W. Zhang et al., Modulation of charge trapping and current-conduction mechanism of TiO2-doped HfO2 gate dielectrics based MOS capacitors by annealing temperature. J. Alloys Compd. 647, 1054–1060 (2015). https://doi.org/10.1016/j.jallcom.2015.06.042

    Article  CAS  Google Scholar 

  64. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors. J. Mater. Sci. 26(11), 8277–8284 (2015). https://doi.org/10.1007/s10854-015-3492-3

    Article  CAS  Google Scholar 

  65. T.M. Pan, W.T. Chang, F.C. Chiu, Structural properties and electrical characteristics of high-k Dy2O3 gate dielectrics. Appl. Surf. Sci. 257(9), 3964–3968 (2011). https://doi.org/10.1016/j.apsusc.2010.11.144

    Article  CAS  Google Scholar 

  66. K. Matocha, R.J. Gutmann, T.P. Chow, Effect of annealing on GaN-insulator interfaces characterized by metal-insulator-semiconductor capacitors. IEEE Trans. Electron Devices 50(5), 1200–1204 (2003). https://doi.org/10.1109/TED.2003.813456

    Article  CAS  Google Scholar 

  67. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Memory improvement with high-k buffer layer in metal/ SrBi2Nb2O9/Al2O3/silicon gate stack for non-volatile memory applications. Superlattices Microstruct. 121, 55–63 (2018). https://doi.org/10.1016/j.spmi.2018.07.028

    Article  CAS  Google Scholar 

  68. R.K. Jha, P. Singh, U. Kashniyal, M. Goswami, B.R. Singh, Impact of HfO2 buffer layer on the electrical characteristics of ferroelectric/high-k gate stack for nonvolatile memory applications. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03632-0

    Article  Google Scholar 

  69. Z. Hou, J. Yao, J. Gu, Z. Wu, and H. Yin, “Impact of annealing temperature on performance enhancement for charge trapping memory with (HfO2)0.9(Al2O3)0.1 trapping layer, in China Semiconductor Technology International Conference 2019, CSTIC 2019, Institute of Electrical and Electronics Engineers Inc., (2019). https://doi.org/10.1109/CSTIC.2019.8755809.

  70. J. Yoo, S. Kim, W. Jeon, A. Park, D. Choi, B. Choi, A study on the charge trapping characteristics of high-k laminated traps. IEEE Electron Device Lett. 40(9), 1427–1430 (2019). https://doi.org/10.1109/led.2019.2932007

    Article  CAS  Google Scholar 

  71. B. Bai et al., Charge trapping memory device based on the Ga2O3 films as trapping and blocking layer. Chinese Phys. B (2019). https://doi.org/10.1088/1674-1056/ab3e62

    Article  Google Scholar 

  72. R. Khosla, E.G. Rolseth, P. Kumar, S.S. Vadakupudhupalayam, S.K. Sharma, J. Schulze, Charge Trapping analysis of metal/Al2O3/SiO2/Si, gate stack for emerging embedded memories. IEEE Trans. Device Mater. Reliab. 17(1), 80–89 (2017). https://doi.org/10.1109/TDMR.2017.2659760

    Article  CAS  Google Scholar 

  73. X. Yan, T. Yang, X. Jia, J. Zhao, Z. Zhou, Impacts of thermal annealing temperature on memory properties of charge trapping memory with NiO nano-pillars. Phys. Lett. A 381(10), 913–916 (2017). https://doi.org/10.1016/j.physleta.2017.01.015

    Article  CAS  Google Scholar 

  74. J.K. Kim et al., Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals. Appl. Phys. Lett. 82(15), 2527–2529 (2003). https://doi.org/10.1063/1.1567039

    Article  CAS  Google Scholar 

  75. S. Maikap et al., Charge trapping characteristics of atomic-layer-deposited HfO2 films with Al2O3 as a blocking oxide for high-density non-volatile memory device applications. Semicond. Sci. Technol. 22(8), 884–889 (2007). https://doi.org/10.1088/0268-1242/22/8/010

    Article  CAS  Google Scholar 

  76. E. Suzuki, Y. Hayashi, On oxide-nitride interface traps by thermal oxidation of thin nitride in metal-oxide-nitride-oxide-sem iconductor memory structures. IEEE Trans. Electron Devices. 33(2), 214–217 (1986). https://doi.org/10.1109/T-ED.1986.22468

    Article  Google Scholar 

  77. G.M. Whyte et al., Experimental and theoretical studies of the solid-state performance of electrodeposited Yb2O3/As2Se3 nanocomposite films. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157324

    Article  Google Scholar 

  78. Y. Zhang et al., Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4900745

    Article  Google Scholar 

  79. X. Lan et al., The interface inter-diffusion induced enhancement of the charge-trapping capability in HfO2/Al2O3 multilayered memory devices. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4829066

    Article  Google Scholar 

  80. B. Morkoc, A. Kahraman, A. Aktag, E. Yılmaz, Electrical parameters of the erbium oxide MOS capacitor for different frequencies. Celal Bayar Üniversitesi Fen Bilimleri Dergisi (2019). https://doi.org/10.18466/cbayarfbe.460022

    Article  Google Scholar 

  81. A. Kahraman, S.C. Deevi, E. Yilmaz, Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices. J. Mater. Sci. 55(19), 7999–8040 (2020). https://doi.org/10.1007/s10853-020-04531-8

    Article  CAS  Google Scholar 

  82. S.E. Zhao et al., Capacitance-frequency estimates of border-trap densities in multifin MOS capacitors. IEEE Trans. Nucl. Sci. 65(1), 175–183 (2018). https://doi.org/10.1109/TNS.2017.2761298

    Article  CAS  Google Scholar 

  83. S.A. Yerişkin, M. Balbaşı, I. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci. 28(11), 7819–7826 (2017). https://doi.org/10.1007/s10854-017-6478-5

    Article  CAS  Google Scholar 

  84. J.R. Nicholls, A.M. Vidarsson, D. Haasmann, E.O. Sveinbjornsson, S. Dimitrijev, near-interface trap model for the low temperature conductance signal in SiC MOS capacitors with nitrided gate oxides. IEEE Trans. Electron. Devices. 67(9), 3722–3728 (2020). https://doi.org/10.1109/TED.2020.3011661

    Article  CAS  Google Scholar 

  85. S. Türkay, A. Tataroğlu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci. 32(9), 11418–11425 (2021). https://doi.org/10.1007/s10854-021-05349-z

    Article  CAS  Google Scholar 

  86. S.O. Tan, O. Çiçek, Ç.G. Türk, Ş Altındal, Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Eng. Sci. Technol. Int. J. (2022). https://doi.org/10.1016/j.jestch.2021.05.021

    Article  Google Scholar 

  87. A. Aktağ, A. Mutale, E. Yılmaz, Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor. J. Mater. Sci. 31(11), 9044–9051 (2020). https://doi.org/10.1007/s10854-020-03438-z

    Article  CAS  Google Scholar 

  88. S. Demirezen, A. Eroğlu, Y. Azizian-Kalandaragh, Ş Altındal, Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage. J. Mater. Sci. 31(18), 15589–15598 (2020). https://doi.org/10.1007/s10854-020-04122-y

    Article  CAS  Google Scholar 

  89. H.I. Yang, W. Choi, Capacitance-voltage measurements of monolayer MoS2 metal-oxide-semiconductor capacitors. Microelectron. Eng. (2021). https://doi.org/10.1016/j.mee.2021.111507

    Article  Google Scholar 

  90. S. Hlali, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, Effect of interface traps for ultra-thin high-k gate dielectric based MIS devices on the capacitance-voltage characteristics. Microelectron. Reliab. 75, 154–161 (2017). https://doi.org/10.1016/j.microrel.2017.06.056

    Article  CAS  Google Scholar 

  91. M.O. Erdal, A. Kocyigit, M. Yıldırım, The rate of Cu doped TiO2 interlayer effects on the electrical characteristics of Al/Cu:TiO2/n-Si (MOS) capacitors depend on frequency and voltage. Microelectron. Reliab. (2020). https://doi.org/10.1016/j.microrel.2020.113591

    Article  Google Scholar 

  92. Y.X. Lin, D.S. Chao, J.H. Liang, J.Y. Jiang, C.F. Huang, Electrical deterioration of 4H-SiC MOS capacitors due to bulk and interface traps induced by proton irradiation. Microelectron. Reliab. (2023). https://doi.org/10.1016/j.microrel.2023.114927

    Article  Google Scholar 

  93. D. Spassov et al., Radiation tolerance and charge trapping enhancement of ALD HfO2/Al2O3 nanolaminated dielectrics. Materials 14(4), 1–17 (2021). https://doi.org/10.3390/ma14040849

    Article  CAS  Google Scholar 

  94. Y. Li et al., Study of γ-ray irradiation influence on TiN/HfO2/Si MOS capacitor by C-V and DLTS. Superlattices Microstruct. 120, 313–318 (2018). https://doi.org/10.1016/j.spmi.2018.05.046

    Article  CAS  Google Scholar 

  95. F.B. Ergin, R. Turan, S.T. Shishiyanu, E. Yilmaz, Effect of γ-radiation on HfO2 based MOS capacitor. Nucl. Instrum. Methods Phys. Res. B 268(9), 1482–1485 (2010). https://doi.org/10.1016/j.nimb.2010.01.027

    Article  CAS  Google Scholar 

  96. M. Ishfaq et al., 1.5MeV proton irradiation effects on electrical and structural properties of TiO2/n-Si interface. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4874942

    Article  Google Scholar 

  97. S. Rui Cao et al., Study of γ-ray radiation influence on SiO2/HfO2/Al2O3/HfO2/Al2O3 memory capacitor by C-V and DLTS. J. Mater. Sci. 30(12), 11079–11085 (2019). https://doi.org/10.1007/s10854-019-01450-6

    Article  CAS  Google Scholar 

  98. M. Ding, Damage effect of ALD-Al2O3 based metal-oxide-semiconductor structures under gamma-ray irradiation. Micromachines (2021). https://doi.org/10.3390/mi12060661

    Article  Google Scholar 

  99. J.S. Bi, Y.N. Xu, G.B. Xu, H.B. Wang, L. Chen, M. Liu, Total ionization dose effects on charge-trapping memory with Al2O3/HfO2/Al2O3 Trilayer Structure. IEEE Trans. Nucl. Sci. 65(1), 200–205 (2018). https://doi.org/10.1109/TNS.2017.2782215

    Article  CAS  Google Scholar 

  100. Y.N. Xu et al., Total ionization dose effects on charge storage capability of Al2O3/HfO2/Al2O3-based charge trapping memory cell. Chin. Phys. Lett. (2018). https://doi.org/10.1088/0256-307X/35/11/118501

    Article  Google Scholar 

  101. J.A. Felix et al., Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks. IEEE Trans. Nucl. Sci. (2003). https://doi.org/10.1109/TNS.2003.820763

    Article  Google Scholar 

  102. M. Ding, Y. Cheng, X. Liu, X. Li, Total dose response of hafnium oxide based metal-oxide-semiconductor structure under gamma-ray irradiation. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1792–1800 (2014). https://doi.org/10.1109/TDEI.2014.004315

    Article  CAS  Google Scholar 

  103. D. Spassov et al. Impact of γ Radiation on Charge Trapping Properties of Nanolaminated HfO2/Al2O3 ALD Stacks, in 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc., pp 59–62. (2019). https://doi.org/10.1109/MIEL.2019.8889600.

  104. A. Kahraman, U. Gurer, E. Yilmaz, The effect and nature of the radiation induced oxide-interface traps on the performance of the Yb2O3 MOS device. Rad. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.109135

    Article  Google Scholar 

  105. S. Maurya, Effect of zero bias gamma ray irradiation on HfO2 thin films. J. Mater. Sci. 27(12), 12796–12802 (2016). https://doi.org/10.1007/s10854-016-5412-6

    Article  CAS  Google Scholar 

  106. A. Tataroǧlu, Ş Altindal, Electrical characteristics of 60Co γ-ray irradiated MIS Schottky diodes. Nucl. Instr. Method. Phys. Res. B 252(2), 257–262 (2006). https://doi.org/10.1016/j.nimb.2006.08.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number; 2016K12-2834. The authors would also like to extend their sincere gratitute to the NÜRDAM for allowing them to use the equipments during the course of this research work.

Funding

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number; 2016K12-2834.

Author information

Authors and Affiliations

Authors

Contributions

MCZ: conceptualization; data calculation; formal analysis; roles/writing—original draft. AM: data calculation; conceptualization; methodology; software; writing—review & editing visualization; investigation. EY: writing original draft; writing—review & editing; project administration; funding acquisition; supervision; validation.

Corresponding author

Correspondence to Alex Mutale.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutale, A., Zulu, M.C. & Yilmaz, E. The deep investigation of annealing temperature and gamma irradiation on Al2O3/Yb2O3/Al2O3/n-Si (100) MOS-like structure. J Mater Sci: Mater Electron 34, 1377 (2023). https://doi.org/10.1007/s10854-023-10731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10731-0

Navigation