Skip to main content
Log in

Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The unique physical, chemical, and electronic properties of rare earth oxides have been of immense interest to replace SiO2 as a dielectric material in metal–oxide–semiconductor (MOS)-based sensors applications to accurately measure the radiation dosage and increase sensor sensitivities in as diverse applications as space radiation, nuclear physics, medical diagnostics, radiation cancer therapy, and personal dosimetry devices. Hence, the electrical characteristics of oxides prior to and after irradiation of MOS-based devices are needed since they are the backbone of the devices such as MOSFETs and ICs. In addition, an understanding of the behaviour of high-k dielectric oxides in an MOS configuration is necessary since the radiation-induced damage occurs in the bulk oxide film and/or near the oxide–semiconductor interface resulting in creation of lattice defects. Hence, MOS structures with the rare earth oxides of Er2O3, Gd2O3, Yb2O3, and a transition metal oxide of HfO2 were produced by RF magnetron sputtering to determine (a) the structure of the films, (b) dielectric constants, (c) capacitance versus voltage behaviour of Er2O3, Gd2O3, Yb2O3, and HfO2 prior to and after irradiation of the devices in the dose range of 0–76 Gy. The experimental results were analysed with a theoretical framework on the energy band diagram and the radiation effects on the electrical characteristics of the MOS capacitors. The characteristics of the devices were evaluated by using effective oxide charge density (\( Q_{\text{EFF}} \)), variation in the oxide trapped charge density (\( \Delta N_{\text{ox}} \)), and interface trapped charge density (\( \Delta N_{\text{it}} \)). In addition, barrier height (\( \phi_{\text{b}} \)), image force barrier lowering (\( \Delta \phi_{\text{b}} \)), acceptor concentration (\( N_{\text{a}} \)) were calculated before and after irradiation and examined the nature of interface states. The radiation responses of the Er2O3 and HfO2 MOS capacitors did not show a stable behaviour with an increase in radiation dose due to possible neutral electron trap centres. Contrary to expectations, we infer that more negative charges are trapped in Gd2O3-based device than positive charges with an increase in radiation dose. The CV curves of the Yb2O3 MOS capacitor shifted in the same direction at both 100 kHz and 1 MHz, and as expected, positive charge traps in the structure are more efficient than negative charges. The observed sensitivities of Yb2O3 MOS capacitors are 4–7 times higher than those of SiO2, and the sensitivities of the Yb2O3 MOS capacitors with a total radiation dose of 70 Gy were found to be around 28.08 mV/Gy at both 100 kHZ and 1 MHz frequencies. The Yb2O3 appears to be a promising dielectric candidate for developing a new generation of radiation sensors with an excellent interface quality when compared to rare earth mixed oxides such as silicates, transition metal oxides, and the silicates based on transition metals, Al2O3, and BiFeO3. Our review of the literature suggests that while the radiation damage has been assessed comprehensively based on the CV characteristics, microstructural characterization of the irradiated films and their interfaces is lacking even though the quality of oxide/Si interface is the most important feature of the devices. The electrical data should be correlated with the inferences from XPS, AFM, TEM, XRD, and other techniques. Further progress requires selection and validation of material properties based on theoretical calculations and predications, utilization of diverse thin film processing and characterization techniques, determining the effect of thickness on the properties of MOS capacitors, a thorough understanding of the interfaces, effect of frequency on the MOS capacitors and the interface characteristics, effect of radiation on the physical, interfacial, and electrical characteristics of MOS capacitors, and preparation and characterization of sensors based on thin films of novel mixed oxides and silicates of different chemistries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Greinacher E (1981) History of rare earth applications, rare earth market today. Am Chem Soc 164:3–17. https://doi.org/10.1021/bk-1981-0164.ch001

    Article  CAS  Google Scholar 

  2. Gschneidner KA (1984) Past, present and future of rare earth metallurgy. J Less-Common Met 100:1–13. https://doi.org/10.1016/0022-5088(84)90050-X

    Article  CAS  Google Scholar 

  3. Gschneidner KA, Eyring LR (1988) Handbook on the physics and chemistry of rare earths. Elseiver, Amsterdam

    Google Scholar 

  4. Jha AR (2014) Rare earth materials: properties and applications, 1st edn. CRC Press, Taylor & Francis group, Boca Raton

    Book  Google Scholar 

  5. Van Gosen BS, Verplanck PL, Seal RR, Long KR, Gambogi J (2017) Rare-earth elements. In: Chap. O of critical mineral resources of the United States-economic and environmental geology and prospects for future supply. U.S. Geol. Surv. Prof. Pap. 1802, pp 1–31. https://doi.org/10.3133/pp1802o

  6. Swift DTK (2014) The economic benefits of the North American rare earths industry. Rare Earth Technol Alliance Am Technol Counc 1–30. http://www.rareearthtechalliance.com/Resources/The-Economic-Benefits-of-the-North-American-Rare-Earths-Industry.pdf. Accessed 15 Mar 2020

  7. U.S. Department of Energy (2011) Critical materials strategy. Crit Mater Strateg 1–190. https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf. Accessed 15 Mar 2020

  8. Jha AR (2016) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/b12152

    Book  Google Scholar 

  9. Beaudry BJ, Gschneidner KA (1978) Chapter 2: Preparation and basic properties of the rare earth metals. In: Geschneider KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths. Elsevier, New York. https://doi.org/10.1016/s0168-1273(78)01006-5

    Chapter  Google Scholar 

  10. Rare-earth element-Minerals and ores|Britannica. https://www.britannica.com/science/rare-earth-element/Minerals-and-ores. Accessed 25 Dec 2019

  11. Mikhelashvili V, Eisenstein G, Edelman F, Brener R, Zakharov N, Werner P (2004) Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films. J Appl Phys 95:613–620. https://doi.org/10.1063/1.1633342

    Article  CAS  Google Scholar 

  12. Ohno Y (2008) XPS studies of the intermediate valence state of Yb in (YbS)1.25CrS2. J Electron Spectrosc Relat Phenom 165:1–4. https://doi.org/10.1016/j.elspec.2008.05.009

    Article  CAS  Google Scholar 

  13. Mukherjee S, Chen CH, Chou CC, Yang HD (2010) Anomalous dielectric behavior in nanoparticle Eu2O3:SiO2 glass composite system. Europhys Lett. https://doi.org/10.1209/0295-5075/92/57010

    Article  Google Scholar 

  14. Yilmaz E, Kaya S (2016) A detailed study on zero-bias irradiation responses of La2O3 MOS capacitors. IEEE Trans Nucl Sci 63:1301–1305. https://doi.org/10.1109/TNS.2016.2530782

    Article  CAS  Google Scholar 

  15. Kao CH, Chen H, Pan YT, Chiu JS, Lin SP, Lai CS (2010) The investigation of the high-k Gd2O3 (gadolinium oxide) interdielectrics deposited on the polycrystalline silicon. J Electrochem Soc 157:915–918. https://doi.org/10.1149/1.3458865

    Article  CAS  Google Scholar 

  16. Jeon S, Im K, Yang H, Lee H, Sim H, Choi S, Jang T, Hwang H (2001) Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications. In: Technical digest—international electron devices meeting, pp 471–474. https://doi.org/10.1109/iedm.2001.979545

  17. Pan TM, Yen LC, Hu CW, Chao TS (2010) Structural and electrical properties of high-k HoTiO3 gate dielectrics. ECS Trans 28:241–245. https://doi.org/10.1149/1.3375607

    Article  CAS  Google Scholar 

  18. Roh K, Yang S, Hong B, Roh Y, Kim J, Jung D (2002) Structural and electrical properties of yttrium oxide with tungsten gate. J Korean Phys Soc 40:103–106

    CAS  Google Scholar 

  19. Zhang J, Wong H, Yu D, Kakushima K, Iwai H (2014) X-ray photoelectron spectroscopy study of high-k CeO2/La2O3 stacked dielectrics. AIP Adv 4:117117–1–117117–9. https://doi.org/10.1063/1.4902017

    Article  CAS  Google Scholar 

  20. Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291. https://doi.org/10.1051/epjap:2004206

    Article  CAS  Google Scholar 

  21. Alarcón-Flores G, Aguilar-Frutis M, Falcony C, García-Hipolito M, Araiza-Ibarra JJ, Herrera-Suárez HJ (2006) Low interface states and high dielectric constant Y2O3 films on Si substrates. J Vac Sci Technol B Microelectron Nanometer Struct 24:1873–1877. https://doi.org/10.1116/1.2214710

    Article  CAS  Google Scholar 

  22. Kar DMS, De Gendt S, Houssa M, Landheer D, Iwai H (eds) (2006) Physics and technology of high-k gate dielectrics 4. Electrochemical Society Inc, New Jersey, pp 1–547

    Google Scholar 

  23. Pan TM, Huang CC (2010) Effects of oxygen content and postdeposition annealing on the physical and electrical properties of thin Sm2O3 gate dielectrics. Appl Surf Sci 256:7186–7193. https://doi.org/10.1016/j.apsusc.2010.05.048

    Article  CAS  Google Scholar 

  24. Yang D, Xue LJ, Devine RAB (2003) Charge trapping in and electrical properties of pulsed laser deposited Sm2O3 films. J Appl Phys 93:9389–9391. https://doi.org/10.1063/1.1569660

    Article  CAS  Google Scholar 

  25. Nakane H, Noya A, Kuriki S, Matsumoto G (1979) Dielectric properties of europium oxide films. Thin Solid Films 59:291–293. https://doi.org/10.1016/0040-6090(79)90438-3

    Article  CAS  Google Scholar 

  26. Kahraman A (2018) Understanding of post deposition annealing and substrate temperature effects on structural and electrical properties of Gd2O3 MOS capacitor. J Mater Sci Mater Electron 29:7993–8001. https://doi.org/10.1007/s10854-018-8804-y

    Article  CAS  Google Scholar 

  27. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B Microelectron Nanometer Struct 18:1785–1791. https://doi.org/10.1116/1.591472

    Article  CAS  Google Scholar 

  28. Li Y, Chen N, Zhou J, Song S, Liu L, Yin Z, Cai C (2004) Effect of the oxygen concentration on the properties of Gd2O3 thin films. J Cryst Growth 265:548–552. https://doi.org/10.1016/j.jcrysgro.2004.02.095

    Article  CAS  Google Scholar 

  29. Huang MRS, Liu C-P, Wang J-C, Chen Y-K, Lai C-S, Fang Y-C, Shu L (2012) Microstructural effect of gadolinium oxide nanocrystals upon annealing on electrical properties of memory devices. Thin Solid Films 520:5579–5583. https://doi.org/10.1016/J.TSF.2012.04.042

    Article  CAS  Google Scholar 

  30. Xu R, Tao Q, Yang Y, Takoudis CG (2012) Atomic layer deposition and characterization of stoichiometric erbium oxide thin dielectrics on Si(100) using (CpMe)3Er precursor and ozone. Appl Surf Sci 258:8514–8520. https://doi.org/10.1016/j.apsusc.2012.05.019

    Article  CAS  Google Scholar 

  31. Adelhelm C, Pickert T, Balden M, Rasinski M, Plocinski T, Ziebert C, Koch F, Maier H (2009) Monoclinic B-phase erbium sesquioxide (Er2O3) thin films by filtered cathodic arc deposition. Scr Mater 61:789–792. https://doi.org/10.1016/J.SCRIPTAMAT.2009.06.031

    Article  CAS  Google Scholar 

  32. Koleshko VM, Babushkina NV (1979) Properties of rare earth oxide films. Thin Solid Films 62:1–4. https://doi.org/10.1016/0040-6090(79)90374-2

    Article  CAS  Google Scholar 

  33. Darmawan P, Chia PS, Lee PS (2007) Rare-earth based ultra-thin Lu2O3 for high-k dielectrics. J Phys Conf Ser 61:229–233. https://doi.org/10.1088/1742-6596/61/1/046

    Article  CAS  Google Scholar 

  34. Robertson J, Wallace RM (2015) High-K materials and metal gates for CMOS applications. Mater Sci Eng R Rep 88:1–41. https://doi.org/10.1016/j.mser.2014.11.001

    Article  Google Scholar 

  35. Hall S, Buiu O, Mitrovic I, Lu Y, Davey W (2007) Review and perspective of high-k dielectrics on silicon. J Telecommun Inf Technol 2:33–43

    Google Scholar 

  36. Gutowski M, Jaffe JE, Liu CL, Stoker M, Hegde RI, Rai RS, Tobin PJ (2002) Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Appl Phys Lett 80:1897–1899. https://doi.org/10.1063/1.1458692

    Article  CAS  Google Scholar 

  37. Robertson J, Falabretti B (2006) Band offsets of high K gate oxides on III–V semiconductors. J Appl Phys 100:014111–1–014111–8. https://doi.org/10.1063/1.2213170

    Article  CAS  Google Scholar 

  38. Regnery S, Thomas R, Ehrhart P, Waser R (2005) SrTa2O6 thin films for high-K dielectric applications grown by chemical vapor deposition on different substrates. J Appl Phys 97:073521–1–073521–8. https://doi.org/10.1063/1.1873033

    Article  CAS  Google Scholar 

  39. Seshan K (2018) Reliability issues: reliability imposed limits to scaling. In: Seshan K, Schepis D (eds) Handbook of thin film deposition, 4th edn. Elsevier Inc., New York, pp 43–62. https://doi.org/10.1016/b978-0-12-812311-9.00003-7

    Chapter  Google Scholar 

  40. Kittl JA, Opsomer K, Popovici M, Menou N, Kaczer B, Wang XP, Adelmann C, Pawlak MA, Tomida K, Rothschild A, Govoreanu B, Degraeve R, Schaekers M, Zahid M, Delabie A, Meersschaut J, Polspoel W, Clima S, Pourtois G, Knaepen W, Detavernier C, Afanas’ev VV, Blomberg T, Pierreux D, Swerts J, Fischer P, Maes JW, Manger D, Vandervorst W, Conard T, Franquet A, Favia P, Bender H, Brijs B, Van Elshocht S, Jurczak M, Van Houdt J, Wouters DJ (2009) High-k dielectrics for future generation memory devices (invited paper). Microelectron Eng 86:1789–1795. https://doi.org/10.1016/j.mee.2009.03.045

    Article  CAS  Google Scholar 

  41. Global Radiation Sensing Field Effect Transistor (RADFETs) Market Trends Analysis and Forecasts to 2022—Research and Markets, 2017

  42. Felix JA, Fleetwood DM, Schrimpf RD, Hong JG, Lucovsky G, Schwank JR, Shaneyfelt MR (2002) Total-dose radiation response of Hafnium-silicate capacitors. IEEE Trans Nucl Sci 49:3191–3196. https://doi.org/10.1109/TNS.2002.805392

    Article  CAS  Google Scholar 

  43. Lok R, Kaya S, Karacali H, Yilmaz E (2017) The Co-60 gamma-ray irradiation effects on the Al/HfSiO4/p-Si/Al MOS capacitors. Radiat Phys Chem 141:155–159. https://doi.org/10.1016/j.radphyschem.2017.06.019

    Article  CAS  Google Scholar 

  44. Lelis AJ, Oldham TR, Boesch HE, McLean FB (1989) The nature of the trapped hole annealing process. IEEE Trans Nucl Sci 36:1808–1815. https://doi.org/10.1109/23.45373

    Article  CAS  Google Scholar 

  45. Holmes-Siedle A (1974) The space-charge dosimeter general principles of a new method of radiation detection. Nucl Instrum Methods 121:169–179

    Article  CAS  Google Scholar 

  46. Pejovic SM, Pejovic MM, Stojanov D, Ciraj-Bjelac O (2016) Sensitivity and fading of pMOS dosemeters irradiated with X-ray radiation doses from 1 to 100 cGy. Radiat Prot Dosim 168:33–39. https://doi.org/10.1093/rpd/ncv006

    Article  CAS  Google Scholar 

  47. Falke P, Fischer HH, Seidensticker KJ, Thiel K, Fischer H, Hilchenbach M, Henkel H, Koch A (2016) Cosmic ray dose monitoring using RadFET sensors of the Rosetta instruments SESAME and COSIMA. Acta Astronaut 125:22–29. https://doi.org/10.1016/j.actaastro.2016.03.001

    Article  CAS  Google Scholar 

  48. Jaksic A, Ristic G, Pejovic M, Mohammadzadeh A, Sudre C, Lane W (2002) Gamma-ray irradiation and post-irradiation responses of high dose range RADFETs. IEEE Trans Nucl Sci 49:1356–1363. https://doi.org/10.1109/TNS.2002.1039667

    Article  CAS  Google Scholar 

  49. Iniewski K, Balasiński A, Majkusiak B, Beck RB, Jakubowski A (1989) Series resistance in a MOS capacitor with a thin gate oxide. Solid State Electron 32:137–140. https://doi.org/10.1016/0038-1101(89)90180-9

    Article  Google Scholar 

  50. Tao J, Zhao CZ, Zhao C, Taechakumput P, Werner M, Taylor S, Chalker PR (2012) Extrinsic and intrinsic frequency dispersion of high-k materials in capacitance–voltage measurements. Materials (Basel) 5:1005–1032. https://doi.org/10.3390/ma5061005

    Article  CAS  Google Scholar 

  51. Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley, Hoboken

    Google Scholar 

  52. Lindroos V, Tilli M, Lehto A, Motooka T (2010) Common abbreviations and acronyms. In: Handbook of silicon based MEMS materials technologies. Elsevier, Oxford, pp 617–622. https://doi.org/10.1016/b978-0-8155-1594-4.00052-8

  53. Pierret RF (1996) Semiconductor device fundamentals. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  54. Chanana RK (2014) BOEMDET-band offsets and effective mass determination technique utilizing Fowler-Nordheim tunneling slope constants in MIS devices on silicon. IOSR J Appl Phys 6:55–61

    Article  Google Scholar 

  55. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  56. Reza AK, Hassan MK, Roy K (2017) Büttiker probe-based modeling of TDDB: application to dielectric breakdown in MTJs and MOS devices. IEEE Trans Electron Devices 64:3337–3345. https://doi.org/10.1109/TED.2017.2715164

    Article  CAS  Google Scholar 

  57. Strong AW, Wu EY, Vollertsen R-P, Sune J, LaRosa G, Sullivan TD (2009) Reliability wearout mechanisms in advanced CMOS technologies. Wiley-IEEE Press, Piscataway

    Book  Google Scholar 

  58. Van Zeghbroeck B (2011) Principles of semiconductor devices—[book review]. http://ecee.colorado.edu/~bart/ecen3320/newbook/chapter6/ch6_3.htm. Accessed 28 June 2019

  59. Ma TP, Dressendorfer PV (1989) Ionizing radiation effects in MOS devices and circuits. Wiley, New York

    Google Scholar 

  60. Ristić GS, Pejović MM, Jakšić AB (2007) Physico-chemical processes in metal–oxide–semiconductor transistors with thick gate oxide during high electric field stress. J Non Cryst Solids 353:170–179. https://doi.org/10.1016/J.JNONCRYSOL.2006.09.020

    Article  Google Scholar 

  61. Antyushin VF, Sysoev BI, Synorov VF (1979) Identification of alkali metal ions in silicon dioxide films. Phys Status Solidi 56:K91–K95. https://doi.org/10.1002/pssa.2210560250

    Article  CAS  Google Scholar 

  62. Ristić GS, Vasović ND, Kovačević M, Jakšić AB (2011) The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si). Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269:2703–2708. https://doi.org/10.1016/j.nimb.2011.08.015

    Article  CAS  Google Scholar 

  63. Kahraman A, Yilmaz E, Aktag A, Kaya S (2016) Evaluation of radiation sensor aspects of Er2O3 MOS capacitors under zero gate bias. IEEE Trans Nucl Sci 63:1284–1293. https://doi.org/10.1109/TNS.2016.2524625

    Article  CAS  Google Scholar 

  64. Bibilashvili A, Kushitashvili Z (2016) C–V measurement of HfO2 dielectric layer received by UV stimulated plasma anodizing. IOP Conf Ser Earth Environ Sci 44:052008. https://doi.org/10.1088/1755-1315/44/5/052008

    Article  Google Scholar 

  65. Brillson LJ (2010) Surfaces and interfaces of electronic materials. Wiley, Columbus

    Book  Google Scholar 

  66. Lannoo M (1990) The role of dangling bonds in the properties of surfaces and interfaces of semiconductors. Rev Phys Appl 25:887–894. https://doi.org/10.1051/rphysap:01990002509088700

    Article  CAS  Google Scholar 

  67. Breeden M, Wolf S, Ueda S, Fang Z, Chang C-Y, Tang K, McIntyre P, Kummel AC (2019) Al2O3/Si0.7Ge0.3(001) & HfO2/Si0.7Ge0.3(001) interface trap state reduction via in situ N2/H2 RF downstream plasma passivation. Appl Surf Sci 478:1065–1073. https://doi.org/10.1016/j.apsusc.2019.01.216

    Article  CAS  Google Scholar 

  68. Kooi E (1967) The surface properties of oxidized silicon. Springer, New York

    Book  Google Scholar 

  69. Kim MS, Kim HT, Chi SS, Kim TE, Shin HT, Kang KW, Park HS, Kim DJ, Min KS, Kang DW, Kim DM (2003) Distribution of interface states in MOS systems extracted by the subthreshold current in MOSFETs under optical illumination. J Korean Phys Soc 43:873–878. https://doi.org/10.3938/jkps.43.873

    Article  CAS  Google Scholar 

  70. McWhorter PJ, Winokur PS, Pastorek RA (1988) Donor/acceptor nature of radiation-induced interface traps. IEEE Trans Nucl Sci 35:1154–1159. https://doi.org/10.1109/23.25433

    Article  CAS  Google Scholar 

  71. Kaya S, Yilmaz E (2015) A comprehensive study on the frequency-dependent electrical characteristics of Sm2O3 MOS capacitors. IEEE Trans Electron Devices 62:980–987. https://doi.org/10.1109/TED.2015.2389953

    Article  CAS  Google Scholar 

  72. Kahraman A, Gurer U, Lok R, Kaya S, Yilmaz E (2018) Impact of interfacial layer using ultra-thin SiO2 on electrical and structural characteristics of Gd2O3 MOS capacitor. J Mater Sci Mater Electron 29:17473–17482. https://doi.org/10.1007/s10854-018-9847-9

    Article  CAS  Google Scholar 

  73. Kahraman A, Yilmaz E, Kaya S, Aktag A (2015) Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors. J Mater Sci Mater Electron 26:8277–8284. https://doi.org/10.1007/s10854-015-3492-3

    Article  CAS  Google Scholar 

  74. Nicollian E, Brews J (1982) MOS (metal oxide semiconductor) physics and technology. Wiley-Interscience, New York

    Google Scholar 

  75. Kwa KSK, Chattopadhyay S, Jankovic ND, Olsen SH, Driscoll LS, Neill AGO (2003) A model for capacitance reconstruction from measured lossy MOS capacitance voltage characteristics. Semicond Sci Technol 18:82–87. https://doi.org/10.1088/0268-1242/18/2/303

    Article  CAS  Google Scholar 

  76. Oh T-Y, Yu Z, Dutton RW (2002) AC analysis of thin gate oxide MOS with quantum mechanical corrections. In: IEEE proceedings international symposium on quality electronic design. IEEE Comput. Soc, pp 326–330. https://doi.org/10.1109/isqed.2002.996767

  77. Kahraman A, Yilmaz E (2017) Proposal of alternative sensitive region for MOS based radiation sensors: Yb2O3. J Vac Sci Technol A Vac Surf Film 35:061511. https://doi.org/10.1116/1.4993545

    Article  CAS  Google Scholar 

  78. Xiao H, Huang S (2010) Frequency and voltage dependency of interface states and series resistance in Al/SiO2/p-Si MOS structure. Mater Sci Semicond Process 13:395–399. https://doi.org/10.1016/J.MSSP.2011.05.009

    Article  CAS  Google Scholar 

  79. Altuntas H, Kaplan K (2018) Electrical conduction mechanisms and dielectric relaxation in Al2O3 thin films deposited by thermal atomic layer deposition. Mater Sci Semicond Process 86:111–114. https://doi.org/10.1016/J.MSSP.2018.06.027

    Article  CAS  Google Scholar 

  80. Bülbül MM, Altındal Ş, Parlaktürk F, Tataroğlu A (2011) The density of interface states and their relaxation times in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures. Surf Interface Anal 43:1561–1565. https://doi.org/10.1002/sia.3749

    Article  CAS  Google Scholar 

  81. Khosla R, Kumar P, Sharma SK (2015) Charge trapping and decay mechanism in post deposition annealed Er2O3 MOS capacitors by nanoscopic and macroscopic characterization. IEEE Trans Device Mater Reliab 15:610–616. https://doi.org/10.1109/TDMR.2015.2498310

    Article  CAS  Google Scholar 

  82. Hill WA, Coleman CC (1980) A single-frequency approximation for interface-state density determination. Solid State Electron 23:987–993. https://doi.org/10.1016/0038-1101(80)90064-7

    Article  CAS  Google Scholar 

  83. Kahraman A, Yilmaz E (2017) Irradiation response of radio-frequency sputtered Al/Gd2O3/p-Si MOS capacitors. Radiat Phys Chem 139:114–119. https://doi.org/10.1016/J.RADPHYSCHEM.2017.04.003

    Article  CAS  Google Scholar 

  84. Kahraman A, Yilmaz E (2018) A comprehensive study on usage of Gd2O3 dielectric in MOS based radiation sensors considering frequency dependent radiation response. Radiat Phys Chem 152:36–42. https://doi.org/10.1016/J.RADPHYSCHEM.2018.07.017

    Article  CAS  Google Scholar 

  85. Ferrari S, Modreanu M, Scarel G, Fanciulli M (2004) X-Ray reflectivity and spectroscopic ellipsometry as metrology tools for the characterization of interfacial layers in high-k materials. Thin Solid Films 450:124–127. https://doi.org/10.1016/J.TSF.2003.10.051

    Article  CAS  Google Scholar 

  86. Bharathi KK, Kalidindi NR, Ramana CV (2010) Grain size and strain effects on the optical and electrical properties of hafnium oxide nanocrystalline thin films. J Appl Phys 108:83529. https://doi.org/10.1063/1.3499325

    Article  CAS  Google Scholar 

  87. Yang S-D, Zheng Y-X, Yang L, Liu Z-H, Zhou W-J, Wang S-Y, Zhang R-J, Chen L-Y (2017) Structural and optical properties of highly (110)-oriented non-polar ZnO evaporated films on Si substrates. Appl Surf Sci 421:891–898. https://doi.org/10.1016/J.APSUSC.2017.02.069

    Article  CAS  Google Scholar 

  88. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  89. Kaya S, Yilmaz E (2018) Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 418:74–79. https://doi.org/10.1016/j.nimb.2018.01.010

    Article  CAS  Google Scholar 

  90. Kao C-H, Chen H, Pan YT, Chiu JS, Lu T-C (2012) The characteristics of the high-K Er2O3 (erbium oxide) dielectrics deposited on polycrystalline silicon. Solid State Commun 152:504–508. https://doi.org/10.1016/J.SSC.2011.12.042

    Article  CAS  Google Scholar 

  91. Xu K, Dang V-S, Ney A, de los Arcos T, Devil A (2014) Nanostructured Er2O3 thin films grown by metalorganic chemical vapour deposition. J Nanosci Nanotechnol 14:5095–5102

    Article  CAS  Google Scholar 

  92. Mishra M, Kuppusami P, Ramya S, Ganesan V, Singh A, Thirumurugesan R, Mohandas E (2015) Microstructure and optical properties of Gd2O3 thin films prepared by pulsed laser deposition. Surf Coat Technol 262:56–63. https://doi.org/10.1016/J.SURFCOAT.2014.12.012

    Article  CAS  Google Scholar 

  93. Ho M-Y, Gong H, Wilk GD, Busch BW, Green ML, Voyles PM, Muller DA, Bude M, Lin WH, See A, Loomans ME, Lahiri SK, Räisänen PI (2003) Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition. J Appl Phys. https://doi.org/10.1063/1.1534381

    Article  Google Scholar 

  94. Molle A, Wiemer C, Bhuiyan MNK, Tallarida G, Fanciulli M, Pavia G (2007) Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates. Appl Phys Lett 90:193511. https://doi.org/10.1063/1.2738367

    Article  CAS  Google Scholar 

  95. Zhao C, Zhao CZ, Werner M, Taylor S, Chalker PR (2012) Advanced CMOS gate stack: present research progress. ISRN Nanotechnol 2012:1–35. https://doi.org/10.5402/2012/689023

    Article  CAS  Google Scholar 

  96. Singh MP, Thakur CS, Shalini K, Banerjee S, Bhat N, Shivashankar SA (2004) Structural, optical, and electrical characterization of gadolinium oxide films deposited by low-pressure metalorganic chemical vapor deposition. J Appl Phys 96:5631–5637. https://doi.org/10.1063/1.1801157

    Article  CAS  Google Scholar 

  97. Zhang L, Liu M, Ren W, Zhou Z, Dong G, Zhang Y, Peng B, Hao X, Wang C, Jiang Z-D, Jing W, Ye Z-G (2017) ALD preparation of high-k HfO2 thin films with enhanced energy density and efficient electrostatic energy storage. R Soc Chem. https://doi.org/10.1039/c6ra27847g

    Article  Google Scholar 

  98. Lin Y-S, Puthenkovilakam R, Chang JP (2002) Dielectric property and thermal stability of HfO2 on silicon. Appl Phys Lett 81:2041–2043. https://doi.org/10.1063/1.1506207

    Article  CAS  Google Scholar 

  99. Jones MN, Kwon YW, Norton DP (2005) Dielectric constant and current transport for HfO2 thin films on ITO. Appl Phys A 81(81):285–288. https://doi.org/10.1007/s00339-005-3208-2

    Article  CAS  Google Scholar 

  100. Khairnar AG, Mahajan AM (2013) Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci 15:24–28. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2012.09.010

    Article  CAS  Google Scholar 

  101. Wiktorczyk T, WesoŁowska C (1982) Some electrical properties of thin Yb2O3 films produced by different technological methods. Thin Solid Films 91:9–21. https://doi.org/10.1016/0040-6090(82)90119-5

    Article  CAS  Google Scholar 

  102. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G, Toro RG, Malandrino G, Fragalà IL, Barreca L, Tondello E, Suvorova AA, Yang D, Irene EA (2007) Multifunctional nanocrystalline thin films of Er2O3: interplay between nucleation kinetics and film characteristics. Adv Funct Mater 17:3607–3612. https://doi.org/10.1002/adfm.200700524

    Article  Google Scholar 

  103. Losurdo M, Giangregorio MM, Bruno G, Yang D, Irene EA, Suvorova AA, Saunders M (2007) Er2O3 as a high-K dielectric candidate. Appl Phys Lett 91:89–92. https://doi.org/10.1063/1.2775084

    Article  CAS  Google Scholar 

  104. Jinesh KB, Lamy Y, Tois E, Besling WFA (2009) Charge conduction mechanisms of atomic-layer-deposited Er2O3 thin films. Appl Phys Lett 94:1–4. https://doi.org/10.1063/1.3159833

    Article  CAS  Google Scholar 

  105. Chen S, Zhu YY, Xu R, Wu YQ, Yang XJ, Fan YL, Lu F, Jiang ZM, Zou J (2006) Superior electrical properties of crystalline Er2O3 films epitaxially grown on Si substrates. Appl Phys Lett 88:8–11. https://doi.org/10.1063/1.2208958

    Article  CAS  Google Scholar 

  106. Chen F-H, Her J-L, Shao Y-H, Matsuda YH, Pan T-M (2013) Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors. Nanoscale Res Lett. https://doi.org/10.1186/1556-276x-8-18

    Article  Google Scholar 

  107. Chu FC, Tsai YJ, Liao SY, Huang CS, Lin RM, Yu SF, Sen Ren S (2012) Improved gate leakage and microwave performance by inserting a thin erbium oxide layer on AlGaN/GaN/Silicon HEMT structure. In: 2012 International Conference on Compound Semiconductor Manufacturing Technology. CS Mantech, pp 3–6

  108. Kwo J, Hong M, Kortan AR, Queeney KT, Chabal YJ, Mannaerts JP, Boone T, Krajewski JJ, Sergent AM, Rosamilia JM (2000) High ε gate dielectrics Gd2O3 and Y2O3 for silicon. Appl Phys Lett 77:130–132. https://doi.org/10.1063/1.126899

    Article  CAS  Google Scholar 

  109. Zhou JP, Chai CL, Yang SY, Liu ZK, Song SL, Li YL, Chen NF (2004) Properties of high k gate dielectric gadolinium oxide deposited on Si (100) by dual ion beam deposition (DIBD). J Cryst Growth 270:21–29. https://doi.org/10.1016/j.jcrysgro.2004.05.114

    Article  CAS  Google Scholar 

  110. Li S, Wu Y, Li G, Yu H, Fu K, Wu Y, Zheng J, Tian W, Li X (2019) Ta-doped modified Gd2O3 film for a novel high k gate dielectric. J Mater Sci Technol 35:2305–2311. https://doi.org/10.1016/j.jmst.2019.05.028

    Article  Google Scholar 

  111. Kang AY, Lenahan PM, Conley JF (2002) The radiation response of the high dielectric-constant hafnium oxide/silicon system. IEEE Trans Nucl Sci 49:2636–2642. https://doi.org/10.1109/TNS.2002.805334

    Article  CAS  Google Scholar 

  112. Wang Y, Zahid F, Wang J, Guo H (2012) Structure and dielectric properties of amorphous high-κ oxides: HfO2, ZrO2, and their alloys. Phys Rev B Condens Matter Mater Phys 85:1–5. https://doi.org/10.1103/physrevb.85.224110

    Article  Google Scholar 

  113. Zhang XY, Hsu CH, Lien SY, Wu WY, Ou SL, Chen SY, Huang W, Zhu WZ, Xiong FB, Zhang S (2019) Temperature-dependent HfO2/Si interface structural evolution and its mechanism. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-2915-0

    Article  Google Scholar 

  114. Rahman MM, Kim JG, Kim DH, Kim TW (2019) Characterization of Al incorporation into HfO2 dielectric by atomic layer deposition. Micromachines 10:1–11. https://doi.org/10.3390/mi10060361

    Article  CAS  Google Scholar 

  115. Ohmi S, Kobayashi C, Kashiwagi I, Ohshima C, Ishiwara H, Iwai H (2003) Characterization of La2O3 and Yb2O3 thin films for high-k gate insulator application. J Electrochem Soc 150:134–140. https://doi.org/10.1149/1.1581278

    Article  CAS  Google Scholar 

  116. Sato S, Ghibaudo G, Benea L, Ionica I, Omura Y, Cristoloveanu S (2019) Impact of contact and channel resistance on the frequency-dependent capacitance and conductance of pseudo-MOSFET. Solid State Electron 159:197–203. https://doi.org/10.1016/J.SSE.2019.03.059

    Article  CAS  Google Scholar 

  117. Tataroğlu A, Altındal Ş (2008) Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures. Microelectron Eng 85:1866–1871. https://doi.org/10.1016/J.MEE.2008.05.025

    Article  Google Scholar 

  118. Tataroğlu A, Altındal Ş (2008) Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high–low frequency capacitance and conductance methods. Microelectron Eng 85:2256–2260. https://doi.org/10.1016/J.MEE.2008.07.001

    Article  Google Scholar 

  119. Bengi S, Bülbül MM (2013) Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Curr Appl Phys 13:1819–1825. https://doi.org/10.1016/J.CAP.2013.07.004

    Article  Google Scholar 

  120. Lok R, Kaya S, Yilmaz E (2018) Thermal phase separation of ZrSiO4 thin films and frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors. Semicond Sci Technol 33:055007. https://doi.org/10.1088/1361-6641/aabb68

    Article  CAS  Google Scholar 

  121. Ergin FB, Turan R, Shishiyanu ST, Yilmaz E (2010) Effect of γ-radiation on HfO2 based MOS capacitor. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:1482–1485. https://doi.org/10.1016/j.nimb.2010.01.027

    Article  CAS  Google Scholar 

  122. Aktağ A, Yilmaz E, Mogaddam NAP, Aygün G, Cantas A, Turan R (2010) Ge nanocrystals embedded in SiO2 in MOS based radiation sensors. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:3417–3420. https://doi.org/10.1016/j.nimb.2010.09.007

    Article  CAS  Google Scholar 

  123. Abubakar S, Kaya S, Karacali H, Yilmaz E (2017) The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors. Sens Actuators A Phys 258:44–48. https://doi.org/10.1016/j.sna.2017.02.022

    Article  CAS  Google Scholar 

  124. Kaya S, Yilmaz E (2014) Use of BiFeO3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 319:168–170. https://doi.org/10.1016/j.nimb.2013.10.016

    Article  CAS  Google Scholar 

  125. Kaya S, Aktag A, Yilmaz E (2014) Effects of gamma-ray irradiation on interface states and series-resistance characteristics of BiFeO3 MOS capacitors. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 319:44–47. https://doi.org/10.1016/j.nimb.2013.11.006

    Article  CAS  Google Scholar 

  126. Maurya S (2016) Effect of zero bias Gamma ray irradiation on HfO2 thin films. J Mater Sci Mater Electron 27:12796–12802. https://doi.org/10.1007/s10854-016-5412-6

    Article  CAS  Google Scholar 

  127. Cheng Y, Ding M, Wu X, Liu X, Wu K (2013) Irradiation effect of HfO2 MOS structure under gamma-ray. In: 2013 IEEE international conference on solid dielectrics. IEEE, pp 764–767. https://doi.org/10.1109/icsd.2013.6619833

  128. Tataroğlu A, Altındal Ş (2006) Electrical characteristics of 60Co γ-ray irradiated MIS Schottky diodes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 252:257–262. https://doi.org/10.1016/j.nimb.2006.08.007

    Article  CAS  Google Scholar 

  129. Zhu HP, Zheng ZS, Li B, Li BH, Zhang GP, Li DL, Gao JT, Yang L, Cui Y, Liang CP, Luo JJ, Han ZS (2018) Total dose effect of Al2O3-based metal–oxide–semiconductor structures and its mechanism under gamma-ray irradiation. Semicond Sci Technol 33:115010. https://doi.org/10.1088/1361-6641/aada7a

    Article  CAS  Google Scholar 

  130. Yilmaz E, Kahraman A, McGarrigle AM, Vasovic N, Yegen D, Jaksic A (2017) Investigation of RadFET response to X-ray and electron beams. Appl Radiat Isot 127:156–160. https://doi.org/10.1016/j.apradiso.2017.06.004

    Article  CAS  Google Scholar 

  131. Yilmaz E, Turan R (2008) Temperature cycling of MOS-based radiation sensors. Sens Actuators A Phys 141:1–5. https://doi.org/10.1016/J.SNA.2007.07.001

    Article  CAS  Google Scholar 

  132. Tugay E, Yilmaz E, Turan R (2012) Influence of gamma irradiation on the C–V characteristics of the Al/SiNx/Si MIS capacitors. J Vac Sci Technol A 30:41507. https://doi.org/10.1116/1.4720351

    Article  CAS  Google Scholar 

  133. Kaya S, Yilmaz E, Kahraman A, Karacali H (2015) Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 358:188–193. https://doi.org/10.1016/j.nimb.2015.06.037

    Article  CAS  Google Scholar 

  134. Manikanthababu N, Arun N, Dhanunjaya M, Saikiran V, Nageswara Rao SVS, Pathak AP (2015) Synthesis, characterization and radiation damage studies of high-k dielectric (HfO2) films for MOS device applications. Radiat Eff Defects Solids 170:207–217. https://doi.org/10.1080/10420150.2014.980259

    Article  CAS  Google Scholar 

  135. Cheng X, Xu D, Song Z, He D, Yu Y, Zhao Q, Shen D (2009) Characterization of gadolinium oxide film by pulse laser deposition. Appl Surf Sci 256:921–923. https://doi.org/10.1016/J.APSUSC.2009.08.086

    Article  CAS  Google Scholar 

  136. Yue S, Wei F, Wang Y, Yang Z, Tu H, Du J (2008) Phase control of magnetron sputtering deposited Gd2O3 thin films as high-κ gate dielectrics. J Rare Earths 26:371–374. https://doi.org/10.1016/S1002-0721(08)60098-8

    Article  Google Scholar 

  137. Morkoc B, Kahraman A, Aktag A, Yılmaz E (2019) Electrical parameters of the erbium oxide MOS capacitor for different frequencies. Celal Bayar Univ J Sci 15:139–143. https://doi.org/10.18466/cbayarfbe.460022

    Article  CAS  Google Scholar 

  138. Dakhel AA (2006) Characterisation of oxidised erbium films deposited on Si(100) substrates. Mater Chem Phys 100:366–371. https://doi.org/10.1016/j.matchemphys.2006.01.005

    Article  CAS  Google Scholar 

  139. Pattabi M, Arun G, Thilipan K (2017) Effect of annealing on the structural and electrical properties of Gd2O3/Si interface for MOS capacitors. AIP Conf Proc 1832:80020. https://doi.org/10.1063/1.4980480

    Article  CAS  Google Scholar 

  140. Singh V, Shashank N, Kumar D, Nahar R (2011) Investigation of the interface trap density and series resistance of a high-k HfO2 -based MOS capacitor: before and after 50 MeV Li3+ ion irradiation. Radiat Eff Defects Solids 166:80–88. https://doi.org/10.1080/10420150.2010.487904

    Article  CAS  Google Scholar 

  141. Kaya S, Yıldız I, Lok R, Yılmaz E (2018) Co-60 gamma irradiation influences on physical, chemical and electrical characteristics of HfO2/Si thin films. Radiat Phys Chem 150:64–70. https://doi.org/10.1016/j.radphyschem.2018.04.023

    Article  CAS  Google Scholar 

  142. Courcot E, Rebillat F, Teyssandier F, Louchet-Pouillerie C (2010) Stability of rare earth oxides in a moist environment at elevated temperatures—experimental and thermodynamic studies. Part II: comparison of the rare earth oxides. J Eur Ceram Soc 30:1911–1917. https://doi.org/10.1016/J.JEURCERAMSOC.2010.02.012

    Article  CAS  Google Scholar 

  143. Guerfi N, Bourbia O, Achour S (2005) Study of erbium oxidation by XPS and UPS. Mater Sci Forum 480–481:193–196. https://doi.org/10.4028/www.scientific.net/MSF.480-481.193

    Article  Google Scholar 

  144. Chen Y-W, Liu P-L, Chan C-H (2014) First-principles studies of Er2O3(110) heteroepitaxy on Si(001). Int J Appl Phys Math 4:108–112. https://doi.org/10.7763/IJAPM.2014.V4.264

    Article  CAS  Google Scholar 

  145. Wang M, Cheng J, Li M, He F (2011) Structure and properties of soda lime silicate glass doped with rare earth. Phys B Condens Matter 406:187–191. https://doi.org/10.1016/j.physb.2010.10.040

    Article  CAS  Google Scholar 

  146. Malchukova E, Boizot B, Petite G, Ghaleb D (2005) Oxidation of Sm2+ in β-irradiated Sm-doped borosilicate glasses under laser illumination. J Lumin 111:53–59. https://doi.org/10.1016/j.jlumin.2004.06.004

    Article  CAS  Google Scholar 

  147. Oldham TR (2004) Switching oxide traps. In: Schrimpf RD, Fleetwood DM (eds) Radiation effects and soft errors in integrated circuits and electronic devices. World Scientific, Singapore, pp 297–319. https://doi.org/10.1142/9789812794703_0019

    Chapter  Google Scholar 

  148. Lelis AJ, Boesch HE, Oldham TR, McLean FB (1988) Reversibility of trapped hole annealing. IEEE Trans Nucl Sci 35:1186–1191. https://doi.org/10.1109/23.25437

    Article  CAS  Google Scholar 

  149. Xin Y, Wang Z, Qi Y, Zhang Z, Zhang S (2010) Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. J Alloys Compd 507:105–111. https://doi.org/10.1016/J.JALLCOM.2010.07.109

    Article  CAS  Google Scholar 

  150. Wang M, Li M, Cheng J, He F (2014) Structure and viscosity of soda lime silicate glasses with varying Gd2O3 content. J Mol Struct 1063:139–144. https://doi.org/10.1016/J.MOLSTRUC.2014.01.062

    Article  CAS  Google Scholar 

  151. Morsi RMM, Abd El-Ghany SI, Morsi MM (2015) Electrical properties of silicate glasses of low level gadolinium oxide doping including dielectric and infrared measures. J Mater Sci Mater Electron 26:1419–1426. https://doi.org/10.1007/s10854-014-2556-0

    Article  CAS  Google Scholar 

  152. Jaksic A, Ristic G, Pejovic M, Mohammadzadeh A, Lane W, Characterisation of radiation response of 400 nm implanted gate oxide RADFETs. In: 2002 23rd international conference on microelectronics. Proceedings (Cat No 02TH8595). IEEE, pp 727–730. https://doi.org/10.1109/miel.2002.1003360

  153. Kahraman A, Yilmaz E (2017) Evaluation of the pre-irradiation electrical characterisations of the RadFET dosimeters with diverse gate oxides by TCAD simulation program. Sak Univ J Sci 21:1258–1265. https://doi.org/10.16984/saufenbilder.39559

    Article  Google Scholar 

  154. Bersuker G, Sim JH, Park CS, Young CD, Nadkarni SV, Choi R, Lee BH (2007) Mechanism of electron trapping and characteristics of traps in HfO2 gate stacks. IEEE Trans Device Mater Reliab 7:138–145. https://doi.org/10.1109/TDMR.2007.897532

    Article  CAS  Google Scholar 

  155. Lenahan PM, Conley JF (2005) Magnetic resonance studies of trapping centers in high-k dielectric films on silicon. IEEE Trans Device Mater Reliab 5:90–102. https://doi.org/10.1109/TDMR.2005.845475

    Article  CAS  Google Scholar 

  156. Senthil Srinivasan VS, Pandya A (2011) Dosimetry aspects of hafnium oxide metal–oxide–semiconductor (MOS) capacitor. Thin Solid Films 520:574–577. https://doi.org/10.1016/j.tsf.2011.07.010

    Article  CAS  Google Scholar 

  157. Fleetwood DM, Winokur PS, Riewe LC, Flament O, Paillet P, Leray JL (1999) The role of electron transport and trapping in MOS total-dose modeling. IEEE Trans Nucl Sci 46:1519–1525. https://doi.org/10.1109/23.819116

    Article  CAS  Google Scholar 

  158. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010 ) XCOM: photon cross section database (version 1.5). Nat. Inst. Standards and Technology, Gaithersburg, MD, USA. https://www.nist.gov/pml/xcom-photon-cross-sections-database. Accessed 22 July 2019

  159. Tomar R, Kumar P, Kumar A, Kumar A, Kumar P, Pant RP, Asokan K (2017) Investigations on structural and magnetic properties of Mn doped Er2O3. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2017.03.003

    Article  Google Scholar 

  160. Sitaputra W, Tsu R (2013) Effects of substrate doping on Gd2O3(100)/Si(100) heterostructure. J Vac Sci Technol A Vac Surf Film 31:021509-1–021509-4. https://doi.org/10.1116/1.4793264

    Article  CAS  Google Scholar 

  161. Ji M, Wang L, Wei F, Tu H, Du J (2010) Study of negative oxygen vacancies in Gd2O3-doped HfO2 thin films as high-k gate dielectrics. Semicond Sci Technol. https://doi.org/10.1088/0268-1242/25/7/075008

    Article  Google Scholar 

  162. Guha S, Narayanan V (2007) Oxygen vacancies in high dielectric constant oxide–semiconductor films. Phys Rev Lett 98:5–8. https://doi.org/10.1103/PhysRevLett.98.196101

    Article  CAS  Google Scholar 

  163. Cho DY, Lee JM, Oh SJ, Jang H, Kim JY, Park JH, Tanaka A (2007) Influence of oxygen vacancies on the electronic structure of HfO2 films. Phys Rev B Condens Matter Mater Phys 76:1–5. https://doi.org/10.1103/physrevb.76.165411

    Article  Google Scholar 

  164. Gavartin JL, Ramo DM, Shluger AL, Bersuker G, Lee BH (2006) Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl Phys Lett 89:10–13. https://doi.org/10.1063/1.2236466

    Article  CAS  Google Scholar 

  165. Yilmaz E, Kaleli B, Turan R (2007) A systematic study on MOS type radiation sensors. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 264:287–292. https://doi.org/10.1016/j.nimb.2007.08.081

    Article  CAS  Google Scholar 

  166. Aitken JM, Young DR, Pan K (1978) Electron trapping in electron-beam irradiated SiO2. J Appl Phys 49:3386–3391. https://doi.org/10.1063/1.325241

    Article  CAS  Google Scholar 

  167. Kang AY, Lenahan PM, Conley JF (2003) Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si. Appl Phys Lett 83:3407–3409. https://doi.org/10.1063/1.1621078

    Article  CAS  Google Scholar 

  168. Gusev EP, D’Emic CP (2003) Charge detrapping in HfO2 high-κ gate dielectric stacks. Appl Phys Lett 83:5223–5225. https://doi.org/10.1063/1.1633332

    Article  CAS  Google Scholar 

  169. Dixit SK, Zhou XJ, Schrimpf RD, Fleetwood DM, Pantelides ST, Choi R, Bersuker G, Feldman LC (2007) Radiation induced charge trapping in ultrathin HfO2-based MOSFETs. IEEE Trans Nucl Sci 54:1883–1890. https://doi.org/10.1109/TNS.2007.911423

    Article  CAS  Google Scholar 

  170. Pan TM, Huang WS (2009) Physical and electrical characteristics of a high-k Yb2O3 gate dielectric. Appl Surf Sci 255:4979–4982. https://doi.org/10.1016/j.apsusc.2008.12.048

    Article  CAS  Google Scholar 

  171. Asensio LJ, Carvajal MA, López-Villanueva JA, Vilches M, Lallena AM, Palma AJ (2006) Evaluation of a low-cost commercial mosfet as radiation dosimeter. Sens Actuators A Phys 125:288–295. https://doi.org/10.1016/j.sna.2005.08.020

    Article  CAS  Google Scholar 

  172. Holmes-Siedle A, Ravotti F, Glaser M (2007) The dosimetric performance of RADFETs in radiation test beams. In: 2007 IEEE radiation effects data workshop. IEEE, pp 42–57. https://doi.org/10.1109/redw.2007.4342539

  173. Martínez-García MS, del Río JT, Palma AJ, Lallena AM, Jaksic A, Carvajal MA (2015) Comparative study of MOSFET response to photon and electron beams in reference conditions. Sens Actuators A Phys 225:95–102. https://doi.org/10.1016/J.SNA.2015.02.006

    Article  Google Scholar 

  174. Soliman FAS, Al-Kabbani ASS, Sharshar KAA, Rageh MSI (1995) Characteristics and radiation effects of MOS capacitors with Al2O3 layers in p-type silicon. Appl Radiat Isot 46:355–361. https://doi.org/10.1016/0969-8043(94)00141-L

    Article  CAS  Google Scholar 

  175. Zhang J, Chen X, Wang L, Zheng ZS, Zhu HP, Li B, Gao JT, Li DL, Luo JJ, Han ZS, Song C, Liu XY (2019) Studies of radiation effects in Al2O3-based metal–oxide–semiconductor structures induced by Si heavy ions. J Appl Phys. https://doi.org/10.1063/1.5052584

    Article  Google Scholar 

  176. Ristić G, Golubović S, Pejović M (1995) Sensitivity and fading of pMOS dosimeters with thick gate oxide. Sens Actuators A Phys 51:153–158. https://doi.org/10.1016/0924-4247(95)01211-7

    Article  Google Scholar 

  177. Lutz G (2007) Semiconductor radiation detectors. Springer, Berlin. https://doi.org/10.1007/978-3-540-71679-2

    Book  Google Scholar 

  178. Aydin ME, Akkiliç K, Kiliçoglu T (2004) Relationship between barrier heights and ideality factors of H-terminated Pb/p-Si contacts with and without the interfacial oxide layer. Appl Surf Sci 225:318–323. https://doi.org/10.1016/j.apsusc.2003.10.022

    Article  CAS  Google Scholar 

  179. Turut A, Karabulut A, Ejderha K, Biyikli N (2015) Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater Sci Semicond Process 39:400–407. https://doi.org/10.1016/j.mssp.2015.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (S. C. Deevi) would like to appreciate the support and encouragement of Professors Puru Jena and Shiv Khanna of Virginia Commonwealth University.

Funding

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract No. 2016K12-2834. One of the authors (S.C. Deevi) would like to acknowledge the Visiting Professor Fellowship of TUBITAK (Scientific and Technological Research Council of Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharama C. Deevi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, A., Deevi, S.C. & Yilmaz, E. Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices. J Mater Sci 55, 7999–8040 (2020). https://doi.org/10.1007/s10853-020-04531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04531-8

Navigation