Skip to main content
Log in

Effects of the oxide/interface traps on the electrical characteristics in Al/Yb2O3/SiO2/n-Si/Al MOS capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we examine the effect of structural modifications occurring during the fabrication of Al/Yb2O3/SiO2/n-Si/Al MOS capacitors under different annealing temperatures on the electrical characteristics of the capacitors. The structural properties depending on post-deposition annealing (PDA) were evaluated based on the crystal properties, elemental compositions, and bonding structures of Yb2O3/SiO2 films, while the electrical characteristics were determined by capacitance–voltage (C–V) measurements. The smallest particle size was found in the film annealed at the highest PDA temperature. In all films, the Yb atom concentration was determined higher than the others. The non-stoichiometric silicate (YbSixOy) layer was detected in film structure annealed at 400 °C. The Yb 4d and O 1s spectra shifted toward higher binding energies with increasing depth in the films. The density of bonded oxygen species decreased with increasing PDA temperature. It was obtained that capacitance in accumulation region (Cacc), dielectric constant (εk), and series resistance (Rs) values tend to decrease with both increasing frequency and PDA temperature. The highest and lowest interface state density (Nit) was found for capacitors obtained from as-deposited and annealed at 400 °C structures, respectively. The effective oxide charge density (Qeff), which expresses the net charge trapped in the oxide layer, is at the 1011 level. The barrier heights (ΦB), which generally tend to increase, have shown that acceptor-type interface states are active on electrical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89(10), 5243–5275 (2001)

    Article  CAS  Google Scholar 

  2. M. Houssa, L. Pantisano, L.A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Mater. Sci. Eng. R 51, 37–85 (2006)

    Article  Google Scholar 

  3. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R 88, 1–41 (2015)

    Article  Google Scholar 

  4. M. Leskela, K. Kukli, M. Ritala, J. Alloys Compd. 418, 27–34 (2006)

    Article  Google Scholar 

  5. K. Frohlich, R. Luptak, E. Dobrocka, K. Husekova, K. Cico, A. Rosova, M. Lukosius, A. Abrutis, P. Pisecny, J.P. Espinos, Mater. Sci. Semicond. Process. 9, 1065–1072 (2006)

    Article  CAS  Google Scholar 

  6. A. Laha, H.J. Osten, A. Fissel, Appl. Phys. Lett. 90, 113508 (2007)

    Article  Google Scholar 

  7. S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, H. Iwai, J. Electrochem. Soc. 150(7), F134–F140 (2003)

    Article  CAS  Google Scholar 

  8. M. Malvestuto, G. Scarel, C. Wiemer, M. Fanciulli, F. D’Acapito, F. Boscherini, Nucl. Instrum. Methods Phys. Res. B 246, 90–95 (2006)

    Article  CAS  Google Scholar 

  9. A. Kahraman, H. Karacali, E. Yilmaz, J. Alloys Compd. 825, 154171 (2020)

    Article  CAS  Google Scholar 

  10. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  11. J.I. Langford, J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  12. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  13. Z. Tian, L. Zheng, Z. Li, J. Wang, J. Eur. Ceram. Soc. 36, 2813–2823 (2016)

    Article  CAS  Google Scholar 

  14. Y. Ohno, J. Electron. Spectrosc. Relat. Phenom. 165, 1–4 (2008)

    Article  CAS  Google Scholar 

  15. S. Suga, S. Ogawa, H. Namatame, M. Taniguchi, A. Kakizaki, T. Ishii, A. Fujimori, S. Oh, H. Kato, T. Miyahara, A. Ochiai, T. Suzuki, T. Kasuya, J. Phys. Soc. Jpn. 58(12), 4534–4543 (1989)

    Article  CAS  Google Scholar 

  16. Z. Guo, A. Liu, Y. Meng, C. Fan, B. Shin, G. Liu, F. Shan, Ceram. Int. 43, 15194–15200 (2017)

    Article  CAS  Google Scholar 

  17. T.M. Pan, W.S. Huang, Appl. Surf. Sci. 255, 4979–4982 (2009)

    Article  CAS  Google Scholar 

  18. G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. 576, 67–75 (2005)

    Article  CAS  Google Scholar 

  19. G.S. Ristic, M.M. Pejovic, A.B. Jaksic, J. Non-Cryst. Solids 353, 170–179 (2007)

    Article  CAS  Google Scholar 

  20. T.P. Ma, P.V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, 1st edn. (Wiley, New York, 1989).

    Google Scholar 

  21. A. Kahraman, S.C. Deevi, E. Yilmaz, J. Mater. Sci. 55(81), 1–42 (2020)

    Google Scholar 

  22. S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ Uslu, Results Phys. 6, 180–185 (2016)

    Article  Google Scholar 

  23. J. Tao, C.Z. Zhao, C. Zhao, P. Taechakumput, M. Werner, S. Taylor, P.R. Chalker, Materials 5(12), 1005–1032 (2012)

    Article  CAS  Google Scholar 

  24. H. Xiao, S. Huang, Mater. Sci. Semicond. Process. 13, 395–399 (2010)

    Article  CAS  Google Scholar 

  25. N. Konofaos, Microelectron. J. 35, 421–425 (2004)

    Article  CAS  Google Scholar 

  26. V.M. Koleshko, N.V. Babushkina, Thin Solid Films 62, 1–4 (1979)

    Article  CAS  Google Scholar 

  27. T. Wiktorczyk, C. Wesolowska, Thin Solid Films 71, 15–21 (1980)

    Article  CAS  Google Scholar 

  28. A. Kahraman, E. Yilmaz, J. Vac. Sci. Technol. A 35, 061511 (2007)

    Article  Google Scholar 

  29. Y. Zhao, K. Kita, A. Toriumi, Appl. Phys. Lett. 96, 242901 (2010)

    Article  Google Scholar 

  30. A.G. Khairnar, A.M. Mahajan, Solid State Sci. 15, 24–28 (2013)

    Article  CAS  Google Scholar 

  31. M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 62, 219–270 (2007)

    Article  CAS  Google Scholar 

  32. J. Zhang, H. Wong, D. Yu, K. Kakushima, H. Iwai, AIP Adv. 4, 117117 (2014)

    Article  Google Scholar 

  33. A. Turut, A. Karabulut, K. Ejdarha, N. Bıyıklı, Mater. Sci. Semicond. Process. 39, 400–407 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under ARDEB1001—Scientific and Technological Research Projects Support Program (Contract Number: 117R054) and the Presidency of Strategy and Budget of the Presidency of Republic of Turkey (Contract Number: 2016K12-2834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Kahraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morkoç, B., Kahraman, A. & Yılmaz, E. Effects of the oxide/interface traps on the electrical characteristics in Al/Yb2O3/SiO2/n-Si/Al MOS capacitors. J Mater Sci: Mater Electron 32, 9231–9243 (2021). https://doi.org/10.1007/s10854-021-05588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05588-0

Navigation