Skip to main content
Log in

CoO@PAN core-sell structure composite as protective layer for stabilizing lithium metal batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The lithium metal anode has been considered the “holy grail” of lithium batteries, but its safety and stability have been compromised by the formation of unstable dendrites. In this study, a CoO@PAN composite with a core-shell structure was prepared via a simple calcination method and used as a protective layer on the surface of lithium metal tablets. The treated lithium tablets exhibited improved electrochemical properties and cycle stability. Symmetric batteries with the CoO@PAN protective layer demonstrated better cycle stability and showed a 300-hour cycle life, compared to only 100 h for pristine lithium tablets. Ex-situ morphology characterization confirmed that the CoO@PAN protective layer could passivate the electrode surface and mediate smooth Li deposition. Galvanostatic intermittent titration technique (GITT) and activation energy (Ea) tests revealed that the CoO@PAN layer had an improved Li+/Li transformation kinetics, which reduced the formation of dead lithium and dendrites. In LiFePO4 full batteries, the capacity retention of treated lithium tablets increased by 35% after 1000 cycles of consistent operation at a 10 C ultrahigh rate. These results suggest that this effective strategy offers a new perspective on the design of novel protective layers for the next generation of lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/c3ee43182g

    Article  CAS  Google Scholar 

  2. M.-S. Balogun, W. Qiu, Y. Luo, H. Meng, W. Mai, A. Onasanya, T.K. Olaniyi, Y. Tong, A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res. 9, 2823–2851 (2016). https://doi.org/10.1007/s12274-016-1171-1

    Article  CAS  Google Scholar 

  3. B. Huang, Z. Pan, X. Su, L. An, Recycling of lithium-ion batteries: recent advances and perspectives. J. Power Sources. 399, 274–286 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.116

    Article  CAS  Google Scholar 

  4. G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  5. G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles. Nature. 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  Google Scholar 

  6. X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  7. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  8. P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy. 3, 16–21 (2017). https://doi.org/10.1038/s41560-017-0047-2

    Article  CAS  Google Scholar 

  9. B. Liu, J.-G. Zhang, W. Xu, Joule 2, 833–845 (2018). https://doi.org/10.1016/j.joule.2018.03.008

    Article  CAS  Google Scholar 

  10. X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res 52, 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437

    Article  CAS  Google Scholar 

  11. C. Brissot, M. Rosso, J.-N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithiumrpolymer cells. J Power Sources 81, 925–929 (1999)

    Article  Google Scholar 

  12. S.-T. Jun-ichi Yamaki, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources. 74, 219–227 (1998)

    Article  Google Scholar 

  13. C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta. 76, 270–274 (2012). https://doi.org/10.1016/j.electacta.2012.05.001

    Article  CAS  Google Scholar 

  14. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y

    Article  CAS  Google Scholar 

  15. E. Doron Aurbach, H.T. Zinigrad, Yaron Cohen, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 148, 405–416 (2002)

    Article  Google Scholar 

  16. Y. Sawada, A. Dougherty, J.P. Gollub, Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260–1263 (1986). https://doi.org/10.1103/PhysRevLett.56.1260

    Article  CAS  Google Scholar 

  17. M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy (2016). https://doi.org/10.1038/nenergy.2016.114

    Article  Google Scholar 

  18. A. Aryanfar, D.J. Brooks, A.J. Colussi, M.R. Hoffmann, Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014). https://doi.org/10.1039/c4cp03590a

    Article  CAS  Google Scholar 

  19. A.B. Gunnarsdottir, C.V. Amanchukwu, S. Menkin, C.P. Grey, Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc 142, 20814–20827 (2020). https://doi.org/10.1021/jacs.0c10258

    Article  CAS  Google Scholar 

  20. X.-R. Chen, C. Yan, J.-F. Ding, H.-J. Peng, Q. Zhang, New insights into “dead lithium” during stripping in lithium metal batteries. J. Energy Chem. 62, 289–294 (2021). https://doi.org/10.1016/j.jechem.2021.03.048

    Article  CAS  Google Scholar 

  21. G.C.L. Chen, W. Tang, F. Chen, X. Liu, A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Mater Today Energy (2020). https://doi.org/10.1016/j.mtener.2020.100520

    Article  Google Scholar 

  22. T. Li, P. Shi, R. Zhang, H. Liu, X.-B. Cheng, Q. Zhang, Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 12, 2224–2229 (2019). https://doi.org/10.1007/s12274-019-2368-x

    Article  CAS  Google Scholar 

  23. X. Sun, X. Zhang, Q. Ma, X. Guan, W. Wang, J. Luo, Revisiting the electroplating process for Lithium-metal anodes for Lithium-metal batteries. Angew Chem. Int. Ed. Engl. 59, 6665–6674 (2020). https://doi.org/10.1002/anie.201912217

    Article  CAS  Google Scholar 

  24. K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci 2, 790–801 (2016). https://doi.org/10.1021/acscentsci.6b00260

    Article  CAS  Google Scholar 

  25. P. Hundekar, S. Basu, X. Fan, L. Li, A. Yoshimura, T. Gupta, V. Sarbada, A. Lakhnot, R. Jain, S. Narayanan, Y. Shi, C. Wang, N. Koratkar, In situ healing of dendrites in a potassium metal battery. Proc. Natl. Acad. Sci. U S A 117, 5588–5594 (2020). https://doi.org/10.1073/pnas.1915470117

    Article  CAS  Google Scholar 

  26. W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu, A. Manthiram, Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021). https://doi.org/10.1038/s41467-021-23155-3

    Article  CAS  Google Scholar 

  27. L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 10, 16–23 (2018). https://doi.org/10.1016/j.ensm.2017.08.001

    Article  CAS  Google Scholar 

  28. Y. Ma, L. Wei, Y. Gu, L. Zhao, Y. Jing, Q. Mu, Y. Su, X. Yuan, Y. Peng, Z. Deng, Insulative ion-conducting lithium selenide as the artificial solid-electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett (2021). https://doi.org/10.1021/acs.nanolett.1c02658

    Article  Google Scholar 

  29. C. Wang, X. Fu, S. Lin, J. Liu, W.-H. Zhong, A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. J. Energy Chem. 64, 485–495 (2022). https://doi.org/10.1016/j.jechem.2021.05.014

    Article  CAS  Google Scholar 

  30. H. Lee, T. Han, K.Y. Cho, M.H. Ryou, Y.M. Lee, Dopamine as a Novel Electrolyte Additive for High-Voltage Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 8, 21366–21372 (2016). https://doi.org/10.1021/acsami.6b06074

    Article  CAS  Google Scholar 

  31. J.J. Walton, T. Hiasa, H. Kumita, K. Takeshi, G. Sandford, Fluorocyanoesters as additives for Lithium-Ion Battery Electrolytes. ACS Appl. Mater. Interfaces. 12, 15893–15902 (2020). https://doi.org/10.1021/acsami.9b23028

    Article  CAS  Google Scholar 

  32. F. Meng, S. Zhu, J. Gao, F. Zhang, D. Li, Effect of electrolyte additives on the performance of lithium-ion batteries. Ionics. 27, 3821–3827 (2021). https://doi.org/10.1007/s11581-021-04163-1

    Article  CAS  Google Scholar 

  33. H. Kang, M. Song, M. Yang, J.- Lee, Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries. J Power Sources (2021). https://doi.org/10.1016/j.jpowsour.2020.229286

    Article  Google Scholar 

  34. T. Li, X.Q. Zhang, N. Yao, Y.X. Yao, L.P. Hou, X. Chen, M.Y. Zhou, J.Q. Huang, Q. Zhang, Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew Chem. Int. Ed. Engl 60, 22683–22687 (2021). https://doi.org/10.1002/anie.202107732

    Article  CAS  Google Scholar 

  35. R. Andersson, G. Hernández, J. See, T.D. Flaim, D. Brandell, J. Mindemark, Designing polyurethane solid polymer electrolytes for high-temperature lithium metal batteries. ACS Appl. Energy Mater 5, 407–418 (2022). https://doi.org/10.1021/acsaem.1c02942

    Article  CAS  Google Scholar 

  36. W. Arnold, V. Shreyas, Y. Li, M.K. Koralalage, J.B. Jasinski, A. Thapa, G. Sumanasekera, A.T. Ngo, B. Narayanan, H. Wang, Synthesis of fluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 14, 11483–11492 (2022). https://doi.org/10.1021/acsami.1c24468

    Article  CAS  Google Scholar 

  37. J. Zhang, A. Yu, Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 60, 823–838 (2015). https://doi.org/10.1007/s11434-015-0771-6

    Article  CAS  Google Scholar 

  38. Z. Tian, H. Yu, Z. Zhang, X. Xu, Performance improvements of cobalt oxide cathodes for rechargeable lithium batteries. ChemBioEng. Rev. 5, 111–118 (2018). https://doi.org/10.1002/cben.201700008

    Article  CAS  Google Scholar 

  39. G.X. Dong, H.J. Li, Y. Wang, W.J. Jiang, Z.S. Ma, Electrospun PAN/cellulose composite separator for high performance lithium-ion battery. Ionics. 27, 2955–2965 (2021). https://doi.org/10.1007/s11581-021-04073-2

    Article  CAS  Google Scholar 

  40. X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 14, 335–344 (2018). https://doi.org/10.1016/j.ensm.2018.05.017

    Article  Google Scholar 

  41. S. Fang, D. Bresser, S. Passerini, Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater (2019). https://doi.org/10.1002/aenm.201902485

    Article  Google Scholar 

  42. T. Kim, L.K. Ono, Y. Qi, Elucidating the mechanism involved in the performance improvement of lithium-ion transition metal oxide battery by conducting polymer. Adv Mater. Interfaces (2019). https://doi.org/10.1002/admi.201801785

    Article  Google Scholar 

  43. W. Wu, M. Wang, J. Wang, Z. Wei, T. Zhang, S.-S. Chi, C. Wang, Y. Deng, Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104867

    Article  Google Scholar 

  44. Y. Zheng, R. Zhou, H. Zhao, F. Ye, X. Zhang, Y. Ge, Oriented PAN/PVDF/PAN laminated nanofiber separator for lithium-ion batteries. Text. Res. J. 92, 2635–2642 (2021). https://doi.org/10.1177/00405175211005027

    Article  CAS  Google Scholar 

  45. L. Cong, H. Zhu, S. Zhang, Y. Xing, J. Xia, X. Meng, P. Yang, Co3O4 anchored on ionic liquid modified PAN as anode materials for flexible lithium-ion batteries. J. Electroanal. Chem. 908, 116105 (2022). https://doi.org/10.1016/j.jelechem.2022.116105

    Article  CAS  Google Scholar 

  46. J. Lang, J. Song, L. Qi, Y. Luo, X. Luo, H. Wu, Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode. ACS Appl. Mater. Interfaces 9, 10360–10365 (2017). https://doi.org/10.1021/acsami.7b00181

    Article  CAS  Google Scholar 

  47. P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. van Wu, Ree, an artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. (Weinh) 8, e2100309 (2021). https://doi.org/10.1002/advs.202100309

    Article  CAS  Google Scholar 

  48. Z. Wang, Z. Yu, B. Wang, Z. Guo, N. Wang, Y. Wang, Y. Xia, Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. J. Mater. Chem. A 7, 22930–22938 (2019). https://doi.org/10.1039/c9ta09232c

    Article  CAS  Google Scholar 

  49. G. Hou, C. Ci, H. Guo, X. Zhang, Q. Sun, J. Cheng, D. Salpekar, Q. Ai, L. Chen, A.B. Puthirath, K. Kato, S.C. Pardo, R. Vajtai, G. Babu, L. Ci, P.M. Ajayan, Facile construction of a hybrid artificial protective layer for stable lithium metal anode. Chem Eng J (2020). https://doi.org/10.1016/j.cej.2019.123542

    Article  Google Scholar 

  50. Y. Zhang, G. Wang, L. Tang, J. Wu, B. Guo, M. Zhu, C. Wu, S.X. Dou, M. Wu, Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. J. Mater. Chem. A 7, 25369–25376 (2019). https://doi.org/10.1039/c9ta09523c

    Article  CAS  Google Scholar 

  51. K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d

    Article  CAS  Google Scholar 

  52. J.B. Park, C. Choi, S. Yu, K.Y. Chung, D.W. Kim, Porous lithiophilic Li–Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv Energy Mater (2021). https://doi.org/10.1002/aenm.202101544

    Article  Google Scholar 

  53. Z. Li, J. Fu, S. Zheng, D. Li, X. Guo, Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes. Small (2022). https://doi.org/10.1002/smll.202200891

    Article  Google Scholar 

  54. C. Zhu, C. Sun, R. Li, S. Weng, L. Fan, X. Wang, L. Chen, M. Noked, X. Fan, Anion–diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7, 1338–1347 (2022). https://doi.org/10.1021/acsenergylett.2c00232

    Article  CAS  Google Scholar 

  55. D. Brian, J. Adams, X. Zheng, W. Ren, J.-G. Xu, Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater 8, 1702097–1702108 (2018). https://doi.org/10.1002/aenm.201702097

    Article  CAS  Google Scholar 

  56. J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, J. Yang, J.-G. Zhang, M.S. Whittingham, Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy. 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z

    Article  CAS  Google Scholar 

  57. D. Wang, Y. Liu, G. Li, C. Qin, L. Huang, Y. Wu, Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv. Funct. Mater (2021). https://doi.org/10.1002/adfm.202106740

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (22075251) and Zhejiang Province Key R&D Plan Project (2021C01176).

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

To the literature review, material preparation, characterization, and interpretation, all authors participated. XX wrote the manuscript’s first draft, while the other authors offered feedback on earlier drafts. The final manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Lianbang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2922.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Chen, H., Tang, J. et al. CoO@PAN core-sell structure composite as protective layer for stabilizing lithium metal batteries. J Mater Sci: Mater Electron 34, 1468 (2023). https://doi.org/10.1007/s10854-023-10722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10722-1

Navigation