Skip to main content
Log in

Electrospun PAN/cellulose composite separator for high performance lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We prepared the polyacrylonitrile (PAN)/cellulose composite separator for lithium-ion batteries (LIBs) using electrospinning and examined its thermal stability, ionic conductivity, electrochemical stability and battery performance, toward high performance of the LIB. The thermal stability of the separator was enhanced by introducing the cellulose at the optimal PAN/cellulose composite of 10 wt% cellulose. The commercial PP completely melted at 210 °C at which the composite separator showed no volume shrinkage. Compared with the PP, the liquid electrolyte-soaked PAN/cellulose (10%) composite exhibited a higher electrochemical oxidation limit (5 V) and a higher ionic conductivity (1.990 mS cm−1) at room temperature. The LiFePO4 battery assembled with the PAN/cellulose (10%) separator expressed an excellent rate performance with a specific discharge capacity of up to 160.1 mAh g−1 at 0.5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aifantis KE, Hackney SA, Kumar RV (2010) High energy density lithium batteries: Materials, engineering, applications. John Wiley & Sons, Berlin

    Book  Google Scholar 

  2. Costa CM, Lee YH, Kim JH, Lee SY, Lanceros-Méndez S (2019) Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater 22:346–375

    Article  Google Scholar 

  3. Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  4. Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330

    Article  CAS  Google Scholar 

  5. Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng ZD, Xiao J (2015) Lithium and lithium ion batteries for applications in microelectronic devices: A review. J Power Sources 286:330–345

    Article  CAS  Google Scholar 

  6. Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of lithium-ion batteries: A review. J Power Sources 306:178–192

    Article  CAS  Google Scholar 

  7. Xiao K, Zhai Y, Yu J, Ding B (2015) Nanonet-structured poly(m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Adv 5:55478–55485

    Article  CAS  Google Scholar 

  8. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267

    Article  Google Scholar 

  9. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lagadec MF, Zahn R, Wood V (2018) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4(1):16–25

    Article  Google Scholar 

  11. Deimede V, Elmasides C (2015) Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technol 3(5):453–468

    Article  Google Scholar 

  12. Koh MJ, Hwang HY, Kim DJ, Kim HJ, Hong YT, Nam SY (2010) Preparation and characterization of porous PVDF-HFP/clay nanocomposite membranes. J Mater Sci Technol 26(7):633–638

    Article  CAS  Google Scholar 

  13. Li X, Zhang M, He J, Wu D, Meng J, Ni P (2014) Effects of fluorinated SiO2 nanoparticles on the thermal and electrochemical properties of PP nonwoven/PVdF-HFP composite separator for Li-ion batteries. J Membr Sci 455:368–374

    Article  CAS  Google Scholar 

  14. Zhou DY, Wang GZ, Li WS, Li GL, Tan CL, Rao MM, Liao YH (2008) Preparation and performances of porous polyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries. J Power Sources 184(2):477–480

    Article  CAS  Google Scholar 

  15. Cui ZY, Xu YY, Zhu LP, Wei XZ, Zhang CF, Zhu BK (2008) Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Mater Lett 62(23):3809–3811

    Article  CAS  Google Scholar 

  16. Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48

    Article  CAS  Google Scholar 

  17. Cao L, An P, Xu Z, Huang J (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39

    Article  CAS  Google Scholar 

  18. Cho TH, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181(1):155–160

    Article  CAS  Google Scholar 

  19. Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121

    Article  CAS  Google Scholar 

  20. Kim YJ, Kim HS, Doh CH, Kim SH, Lee SM (2013) Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. J Power Sources 244:196–206

    Article  CAS  Google Scholar 

  21. Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F, Du J, Chen Y (2020) High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J Membr Sci 593:117428

    Article  CAS  Google Scholar 

  22. Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22(32):16618

    Article  CAS  Google Scholar 

  23. Zhang TW, Tian T, Shen B, Song YH, Yao HB (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14

    Article  CAS  Google Scholar 

  24. Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24(10):4103–4122

    Article  CAS  Google Scholar 

  25. Li H, Li L, Zheng S, Wang X, Ma Z (2019) High temperature resistant separator of PVDF-HFP/DBP/C-TiO2 for lithium-ion batteries. Mater 12(17):2813

    Article  CAS  Google Scholar 

  26. Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9(20):2685–2720

    Article  CAS  Google Scholar 

  27. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159

    Article  Google Scholar 

  28. Sun CQ (2009) Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci 54(2):179–307

    Article  CAS  Google Scholar 

  29. Liu X, Zhang X, Bo M, Li L, Tian H, Nie Y, Sun Y, Xu S, Wang Y, Zheng W, Sun CQ (2015) Coordination-resolved electron spectrometrics. Chem Rev 115(14):6746–6810

    Article  CAS  PubMed  Google Scholar 

  30. He T, Fu Y, Meng X, Yu X, Wang X (2018) A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochim Acta 282:97–104

    Article  CAS  Google Scholar 

  31. Lee JH, Manuel J, Liu Y, Park KE, Park WH, Ahn JH (2016) High temperature resistant electrospun nanofibrous meta-aramid separators for lithium ion batteries. J Nanosci Nanotechnol 16(10):10724–10729

    Article  CAS  Google Scholar 

  32. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  CAS  Google Scholar 

  33. Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem 6(3):207–213

    Article  CAS  Google Scholar 

  34. Evans T, Lee JH, Bhat V, Lee SH (2015) Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. J Power Sources 292:1–6

    Article  CAS  Google Scholar 

  35. Jia S, Long J, Li J, Yang S, Huang K, Yang N, Liang Y, Xiao J (2020) Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries. J Mater Sci 55(30):14907–14921

    Article  CAS  Google Scholar 

  36. Zhao J, Zhang J, Hu P, Ma J, Wang X, Yue L, Xu G, Qin B, Liu Z, Zhou X, Cui G (2016) A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta 188:23–30

    Article  CAS  Google Scholar 

  37. Yanilmaz M, Lu Y, Zhu J, Zhang X (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212

    Article  CAS  Google Scholar 

  38. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid-State Lett 10(7):A159

    Article  CAS  Google Scholar 

  39. Li C, Yue H, Wang Q, Shi M, Zhang H, Li X, Dong H, Yang S (2018) A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries. J Mater Sci 54(2):1566–1579

    Article  Google Scholar 

  40. Alcoutlabi M, Lee H, Watson JV, Zhang X (2012) Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. J Mater Sci 48(6):2690–2700

    Article  Google Scholar 

  41. Qiu Y, Geng Y, Yu J, Zuo X (2013) High-capacity cathode for lithium-ion battery from LiFePO4/(C+Fe2P) composite nanofibers by electrospinning. J Mater Sci 49(2):504–509

    Article  Google Scholar 

  42. Lin CE, Zhang H, Song YZ, Zhang Y, Yuan JJ, Zhu BK (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6(3):991–998

    Article  CAS  Google Scholar 

  43. Gao Y, Sang X, Chen Y, Li Y, Liu B, Sheng J, Feng Y, Li L, Liu H, Wang X, Kuang C, Zhai Y (2019) Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery. J Mater Sci 55(8):3549–3560

    Article  Google Scholar 

  44. Khan WS, Asmatulu R, Rodriguez V, Ceylan M (2014) Enhancing thermal and ionic conductivities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for battery-separator applications. Int J Energy Res 38(15):2044–2051

    Article  CAS  Google Scholar 

  45. He C, Liu J, Li J, Zhu F, Zhao H (2018) Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries. J Membr Sci 560:30–37

    Article  CAS  Google Scholar 

  46. He C, Liu J, Cui J, Li J, Wu X (2018) A gel polymer electrolyte based on Polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery. Solid State Ionics 315:102–110

    Article  CAS  Google Scholar 

  47. Zhao M, Wang J, Chong C, Yu X, Wang L, Shi Z (2015) An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Adv 5(122):101115–101120

    Article  CAS  Google Scholar 

  48. Sheng JZ, Peng C, Xu YN, Lyu HY, Xu X, An QY, Mai LQ (2017) KTi2(PO4)3 with Large Ion Diffusion Channel for High-Effciency Sodium Storage. Adv Energy Mater 7(17):1700247

    Article  Google Scholar 

  49. Li ZH, He Q, Xu X, Zhao Y, Liu X, Zhou C, Ai D, Xia LX, Mai LQ (2018) A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv Mater 30(45):e1804089

    Article  PubMed  Google Scholar 

  50. Li ZH, Zhou C, Hua JH, Hong XF, Sun CL, Li HW, Xu X, Mai LQ (2020) Engineering Oxygen Vacancies in a Polysulfide-Blocking Layer with Enhanced Catalytic Ability. Adv Mater 32(10):e1907444

    Article  PubMed  Google Scholar 

  51. Gou J, Liu W, Tang A (2020) A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery. J Mater Sci 55(24):10699–10711

    Article  CAS  Google Scholar 

  52. Li L, Li H, Wang Y, Zheng S, Zou Y, Ma Z (2020) Poly (vinylidenefluoride – hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries. Ionics 26(9):4489–4497

    Article  CAS  Google Scholar 

  53. Kuo PL, Wu CA, Lu CY, Tsao CH, Hsu CH, Hou SS (2014) High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl Mater Interfaces 6(5):3156–3162

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Xu J, Guo B, He X (2014) Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries. J Mater Sci 49(20):6961–6966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Nos. 11972157 and 11872054), the Natural Science Foundation of Hunan Province (2020JJ2026), the Excellent Youth Project of Hunan Education Department (No 18B080), and the Science and Technology Innovation Project of Hunan Province (2018RS3091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Wang or Z. S. Ma.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, G.X., Li, H.J., Wang, Y. et al. Electrospun PAN/cellulose composite separator for high performance lithium-ion battery. Ionics 27, 2955–2965 (2021). https://doi.org/10.1007/s11581-021-04073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04073-2

Keywords

Navigation