Skip to main content
Log in

High dielectric response of TaOX thin film and its modification by controlling oxygen vacancy concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

How to prepare a high-k gate dielectric to replace SiO2 by a simple fabrication process compatible with standard CMOS technology is always a hot and difficult issue. In this work, high dielectric constants of 2919.5 at 100 Hz have been found in the non-stoichiometric TaOX thin film with abundant oxygen vacancies, which was deposited by using a mixed gas atmosphere with Ar of 20 SCCM and O of 2 SCCM. More impressively, the dielectric constants of TaOX thin film can be intentionally modulated by adjusting oxygen vacancy concentration, and the oxygen vacancy concentration of the TaOX thin film was controlled by choosing different oxygen atmosphere concentrations during chemical vapor deposition. Due to the polarization induced by oxygen vacancies, the dielectric constants of TaOX thin film was far higher than the dielectric constant of 29.4 of Ta2O5 thin film. This work demonstrates the possibility of obtaining the high dielectric response and adjusting the permittivity for metal oxide thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. V. Naidu, S. Kotamraju, Mater. Sci. Forum 897, 571–574 (2017)

    Article  Google Scholar 

  2. M.K. Bera, C. Mahata, C.K. Maiti, Thin Solid Films 517, 27–30 (2008)

    Article  CAS  Google Scholar 

  3. L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, Ieee Electron Device Lett. 21, 181–183 (2000)

    Article  CAS  Google Scholar 

  4. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R 88, 1–41 (2015)

    Article  Google Scholar 

  5. M.C. Tsai, P.H. Cheng, M.H. Lee, H.C. Lin, M.J. Chen, J. Phys. D: Appl. Phys. 49, 265108 (2016)

    Article  Google Scholar 

  6. J. Robertson, J. Vac. Sci. & Technol. B 18, 1785–1791 (2000)

    Article  CAS  Google Scholar 

  7. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757–2776 (1996)

    Article  CAS  Google Scholar 

  8. A. Singh, S. Chaudhury, C. Kumar Pandey, S. Madhulika Sharma, C. Kumar Sarkar, IET Circuits, Devices & Syst. 13, 1305–1310 (2019)

    Article  Google Scholar 

  9. L. Huang, Y. Liu, X. Peng, J.K.O. Sin, Ieee Trans. Electron Devices 69, 690–695 (2022)

    Article  CAS  Google Scholar 

  10. T. Guo, H. Wu, X. Su, Q. Guo, C. Liu, J. Alloys Compds. 871, 159116 (2021)

    Article  CAS  Google Scholar 

  11. P. Han, T.C. Lai, M. Wang, X.R. Zhao, Y.Q. Cao, D. Wu, A.D. Li, Appl. Surf. Sci. 467–468, 423–427 (2019)

    Article  Google Scholar 

  12. Y.Q. Wang, W.S. Hwang, G. Zhang, W.J. Yoo, Ieee Trans. Electron Devices 54, 2699–2705 (2007)

    Article  CAS  Google Scholar 

  13. E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug, M.A. Gribelyuk, Appl Phys Lett 76, 176–178 (2000)

    Article  CAS  Google Scholar 

  14. S.K. Kim, S.W. Lee, J.H. Han, B. Lee, S. Han, C.S. Hwang, Adv. Funct. Mater. 20, 2989–3003 (2010)

    Article  CAS  Google Scholar 

  15. J.-J. Ma, Y. Gao, Y. Chen, M.-H. Wang, J. Mater. Sci. Mater. Electron. 33, 16915–16922 (2022)

    Article  CAS  Google Scholar 

  16. C. Wang, G.Q. Mao, M. Huang, E. Huang, Z. Zhang, J. Yuan, W. Cheng, K.H. Xue, X. Wang, X. Miao, Adv. Sci. 9, 2201446 (2022)

    Article  CAS  Google Scholar 

  17. T.H. Kim, S. Kim, B.G. Park, Microelectron. Eng. 237, 111498 (2021)

    Article  CAS  Google Scholar 

  18. T.M. Pan, C.H. Lin, S.T. Pang, Ieee. Sens. J. 21, 2597–2603 (2021)

    Article  CAS  Google Scholar 

  19. S.P. Swathi, S. Angappane, J. Sci.: Adv. Mater. Devices 6, 601–610 (2021)

    CAS  Google Scholar 

  20. B.K. Sahu, A. Das, Phys. E: Low-dimens. Syst. Nanostruct. 103, 60–65 (2018)

    Article  CAS  Google Scholar 

  21. M. Zulfiqar, A. Zubair, T. Khan, N. Hua, S. Ilyas, A.M. Fashu, M.A. Afzal, R.K. Safeen, J. Mater. Sci. Mater. Electron. 32, 9463–9474 (2021)

    Article  CAS  Google Scholar 

  22. M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10, 625–630 (2011)

    Article  CAS  Google Scholar 

  23. Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang, Nanoscale 8, 14015–14022 (2016)

    Article  CAS  Google Scholar 

  24. M. Muralidhar Singh, G. Vijaya, M.S. Krupashankara, B.K. Sridhara, T.N. Shridhar, Mater Today: Proc 5, 2696–2704 (2018)

    CAS  Google Scholar 

  25. D. Hu, J. Chen, W. Zhu, S. Huang, W. Chen, J. Wang, X. Wang, P. Xiao, Rev. Sci. Instrum. 92, 123906 (2021)

    Article  CAS  Google Scholar 

  26. S.C. Jeon, Appl Sci 10, 3871 (2020)

    Article  CAS  Google Scholar 

  27. D.B. Lee, J.H. Ko, J.H. Yi, J. Therm. Spray Technol. 14, 315–320 (2005)

    Article  CAS  Google Scholar 

  28. N. Benito, C. Palacio, Appl. Surf. Sci. 351, 753–759 (2015)

    Article  CAS  Google Scholar 

  29. M. Yao, J. Chen, Z. Su, Y. Peng, P. Zou, X. Yao, Acs Appl. Mater. & Interfaces 8, 11100–11107 (2016)

    Article  CAS  Google Scholar 

  30. B. Arslan, S.O. Tan, H. Tecimer, Ş Altındal, J. Mater. Sci. Mater. Electron. 32, 26700–26708 (2021)

    Article  CAS  Google Scholar 

  31. G.S. Oehrlein, F.M. d’Heurle, A. Reisman, J. Appl. Phys. 55, 3715–3725 (1984)

    Article  CAS  Google Scholar 

  32. H.F. Zhang, B.Y. Ning, T.C. Weng, X.J. Ning, J. Am. Ceram. Soc. 104, 6413–6423 (2021)

    Article  CAS  Google Scholar 

  33. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821–826 (2013)

    Article  CAS  Google Scholar 

  34. Y.T. Chi, K.J. Van Vliet, M. Youssef, B. Yildiz, Adv. Sci. 9, 2104476 (2022)

    Article  CAS  Google Scholar 

  35. A.Q. Jiang, L.D. Zhang, Phys. Rev. B 60, 9204–9207 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Science and Technology Plan (Grant No. 2022A0505020022), the youth project of Guangdong Foshan joint fund of Guangdong Natural Science Foundation (Grant No. 2020A1515110601), the Natural Science Foundation of China (Grant No. 62006042), and the youth project of Guangdong Foshan joint fund of Guangdong Natural Science Foundation (Grant No. 2019A1515110444).

Funding

This work was supported by the Guangdong Science and Technology Plan (Grant No. 2022A0505020022), the youth project of Guangdong Foshan joint fund of Guangdong Natural Science Foundation (Grant No. 2020A1515110601), the Natural Science Foundation of China (Grant No. 62006042), and the youth project of Guangdong Foshan joint fund of Guangdong Natural Science Foundation (Grant No. 2019A1515110444).

Author information

Authors and Affiliations

Authors

Contributions

Investigation, data curation, formal analysis and writing-original draft [QC]; Supervision [JC; GN]; Writing-review [SL; SZ]; Conceptualization [XW; WZ; XY and PX]; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianwen Chen or Si Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Chen, J., Liu, S. et al. High dielectric response of TaOX thin film and its modification by controlling oxygen vacancy concentration. J Mater Sci: Mater Electron 34, 969 (2023). https://doi.org/10.1007/s10854-023-10419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10419-5

Navigation