Skip to main content
Log in

Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the influence of oxygen vacancies (varying) on the structure and properties (dielectric and magnetic) of Co (fixed) and Mn (varied) co-doped ZnO nanoparticles (NPs) fabricated using the chemical precipitation technique. The oxygen vacancies in the lattice increased with an increase in dopants (Co, Mn) concentration. Annealing of the doped nanoparticles decreased their dielectric properties due to reduced grain boundaries caused by enhanced grain growth. Replacement of Zn ions with dopants in the lattice enhanced the samples' electrical conductivities due to the reduction in grain boundaries and increase of charge carriers. The co-doped nanoparticles annealed at 600 °C exhibited some hysteresis loop changes and became ferromagnetic (FM). The magnetization increased with an increase in dopants content in the ZnO matrix, while coercivity decreased. This shows that the properties of the doped samples are strongly related to the number of oxygen vacancies. These results demonstrated that the enhanced dielectric and magnetization responses of Co (fixed) and Mn (varied) co-doped ZnO nanoparticles are strongly correlated with the oxygen vacancies. The enhancement in optical, dielectric, and magnetic properties make transition metals (TM)-doped ZnO nanoparticles suitable for spintronics, and optoelectronic-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 75, 035322 (2007)

    Article  Google Scholar 

  2. C. Klingshirn, Phys. Status Solidi B 71, 547 (1975)

    Article  CAS  Google Scholar 

  3. Y. Chang, D. Wang, X. Luo, X. Xu, X. Chen, L. Li, C. Chen, R. Wang, J. Xu, D. Yu, Appl. Phys. Lett. 83, 4020 (2003)

    Article  CAS  Google Scholar 

  4. Y. Ohno, F. Matsukura, H. Ohno, D.D. Awschaloin, Nature 402, 790 (1999)

    Article  CAS  Google Scholar 

  5. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, V.S. von Molnár, M. Roukes, A.Y. Chtchelkanova, D. Treger, Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  6. A. Fert, Angew. Chem. Int. Ed. 47, 5956 (2008)

    Article  CAS  Google Scholar 

  7. T. Dietl, H. Ohno, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  8. X. Xu, C. Cao, J. Magn. Magn. Mater. 321, 2216 (2009)

    Article  CAS  Google Scholar 

  9. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  CAS  Google Scholar 

  10. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, E.D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  11. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009)

    Article  CAS  Google Scholar 

  12. G.Y. Ahn, S.-I. Park, C.S. Kim, J. Magn. Magn. Mater. 303, e329 (2006)

    Article  CAS  Google Scholar 

  13. S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)

    Article  CAS  Google Scholar 

  14. J. Wen, J. Lao, D. Wang, T. Kyaw, Y. Foo, Z. Ren, Chem. Phys. Lett. 372, 717 (2003)

    Article  CAS  Google Scholar 

  15. A. Ishizumi, Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005)

    Article  Google Scholar 

  16. J. Chen, M. Yu, W. Zhou, K. Sun, L. Wang, Appl. Phys. Lett. 87, 173119 (2005)

    Article  Google Scholar 

  17. Y. Chen, Y. Liu, S. Lu, C. Xu, C. Shao, C. Wang, J. Zhang, Y. Lu, D. Shen, X. Fan, J. Chem. Phys. 123, 134701 (2005)

    Article  CAS  Google Scholar 

  18. L. Yang, X. Wu, T. Qiu, G. Siu, P.K. Chu, J. Appl. Phys. 99, 074303 (2006)

    Article  Google Scholar 

  19. R. Khan, C.I.L. de Araujo, T. Khan, S.A. Khattak, E. Ahmed, A. Khan, B. Ullah, G. Khan, K. Safeen, A. Safeen, J. Mater. Sci. 30, 3396 (2019)

    CAS  Google Scholar 

  20. R. Khan, S. Fashu, J. Mater. Sci. 28, 10122 (2017)

    CAS  Google Scholar 

  21. S. Tanaka, A. Makiya, Z. Kato, K. Uematsu, J. Eur. Ceram. Soc. 29, 955 (2009)

    Article  CAS  Google Scholar 

  22. T.S. Suzuki, T. Uchikoshi, Y. Sakka, Sci. Technol. Adv. Mater. 7, 356 (2006)

    Article  CAS  Google Scholar 

  23. D. Molodov, P. Konijnenberg, Scripta Mater. 54, 977 (2006)

    Article  CAS  Google Scholar 

  24. R. Khan, S. Fashu, Z.U. Rehman, A. Khan, M.U. Rahman, J. Mater. Sci. 29, 32 (2018)

    CAS  Google Scholar 

  25. X. Zeng, V. Pelenovich, A. Ieshkin, A. Danilov, A. Tolstogouzov, W. Zuo, J. Ranjana, D. Hu, N. Devi, D. Fu, Rapid Commun. Mass Spectrom. 33, 1449 (2019)

    Article  CAS  Google Scholar 

  26. J. Wojnarowicz, M. Omelchenko, J. Szczytko, T. Chudoba, S. Gierlotka, A. Majhofer, A. Twardowski, W. Lojkowski, Crystals 8, 410 (2018)

    Article  Google Scholar 

  27. B. Babić-Stojić, D. Milivojević, J. Blanuša, V. Spasojević, N. Bibić, B. Simonović, D. Arandelović, J. Phys. 20, 235217 (2008)

    Google Scholar 

  28. P. Lommens, K. Lambert, F. Loncke, D. De Muynck, T. Balkan, F. Vanhaecke, H. Vrielinck, F. Callens, Z. Hens, ChemPhysChem 9, 484 (2008)

    Article  CAS  Google Scholar 

  29. J. Beltrán, J. Osorio, C. Barrero, C.B. Hanna, A. Punnoose, J. Appl. Phys. 113, 17C308 (2013)

    Article  Google Scholar 

  30. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar, V. Kaviyarasan, J. Mater. Sci. Technol. 30, 1108 (2014)

    Article  CAS  Google Scholar 

  31. L. Yang, X. Wu, G. Huang, T. Qiu, Y. Yang, J. Appl. Phys. 97, 014308 (2005)

    Article  Google Scholar 

  32. K. Rajwali, F. Ming-Hu, Chin. Phys. B 24, 127803 (2015)

    Article  Google Scholar 

  33. R. Khan, C.I.L. de Araujo, T. Khan, A. Khan, B. Ullah, S. Fashu, J. Mater. Sci. 29, 9785 (2018)

    CAS  Google Scholar 

  34. H. Nasir, N. Rahman, Zulfiqar et al., Variations in structural, optical, and dielectric properties of CuO nanostructures with thermal decomposition. J. Mater. Sci. 31, 10649–10656 (2020)

    CAS  Google Scholar 

  35. S. Fabbiyola, L.J. Kennedy, A. Dakhel, M. Bououdina, J.J. Vijaya, T. Ratnaji, J. Mol. Struct. 1109, 89 (2016)

    Article  CAS  Google Scholar 

  36. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)

    Article  CAS  Google Scholar 

  37. M. Alijani, N.N. Ilkhechi, Silicon 10, 2569 (2018)

    Article  CAS  Google Scholar 

  38. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Phys. Rev. Lett. 97, 037203 (2006)

    Article  Google Scholar 

  39. Y. Lin, D. Jiang, F. Lin, W. Shi, X. Ma, J. Alloy Compd. 436, 30 (2007)

    Article  CAS  Google Scholar 

  40. Z. Tian, S. Yuan, J. He, P. Li, S. Zhang, C. Wang, Y. Wang, S. Yin, L. Liu, J. Alloy Compd. 466, 26 (2008)

    Article  CAS  Google Scholar 

  41. C. Gao, F. Lin, X. Zhou, W. Shi, A. Liu, J. Alloy Compd. 565, 154 (2013)

    Article  CAS  Google Scholar 

  42. S. Qi, F. Jiang, J. Fan, H. Wu, S. Zhang, G.A. Gehring, Z. Zhang, X. Xu, Phys. Rev. B 84, 205204 (2011)

    Article  Google Scholar 

  43. K.C. Verma, R. Kotnala, Phys. Chem. Chem. Phys. 18, 5647 (2016)

    Article  CAS  Google Scholar 

  44. S.V. Vegesna, V.J. Bhat, D. Bürger, J. Dellith, I. Skorupa, O.G. Schmidt, H. Schmidt, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  45. R. Khan, S. Fashu, J. Mater. Sci. 28, 4333 (2017)

    CAS  Google Scholar 

  46. S.U. Haq, S.A. Khattak, T. Jan, R. Khan, I. Ullah, T. Khan, S.K. Shah, G. Khan, R. Ahmad, Mater. Res. Express 6, 115037 (2019)

    Article  CAS  Google Scholar 

  47. D. Karmakar, S. Mandal, R. Kadam, P. Paulose, A. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G. Das, Phys. Rev. B 75, 144404 (2007)

    Article  Google Scholar 

  48. R. Khan, S. Fashu, Y. Zaman, J. Mater. Sci. 27, 5960 (2016)

    CAS  Google Scholar 

  49. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  CAS  Google Scholar 

  50. R. Khan, M.U. Rahman, Z. Iqbal, J. Mater. Sci. 27, 12490 (2016)

    Google Scholar 

  51. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tang Hua or Rajwali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, Zubair, M., Khan, A. et al. Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 32, 9463–9474 (2021). https://doi.org/10.1007/s10854-021-05610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05610-5

Navigation