Skip to main content
Log in

Effect of the growth rate on the structural, magnetic and transport properties of NiFe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, a detailed study of the influence of growth rate on the structural, magnetic, and transport properties of Ni81Fe19 (NiFe) thin films of nominal thickness ~ 13 nm, deposited at room temperature on Si (100) substrates using DC-magnetron sputtering technique, is carried out. The growth rate is varied by altering the DC-sputtering power PDC from 50 to 80 W while keeping all other growth parameters unchanged. All the films possess FCC structure with very low interface width (< 1 nm) as determined from the analyses of their x-ray reflectivity data. The ferromagnetic resonance (FMR) measurement is used to investigate the impact of PDC on the effective damping parameter (\({\alpha }_{\mathrm{eff}}\)) of these NiFe thin films. The \({\alpha }_{\mathrm{eff}}\) in these films is found to be sensitive to the crystallite size, coercivity and interface width. The lowest value of \({\alpha }_{\mathrm{eff}}\) of 0.0081 ± 0.0002 was found for the sample grown at PDC of 80 W. The temperature-dependent resistivity measurements carried out on these samples over 20–300 K temperature range revealed the dominance of electron-magnon scattering at lower temperatures (25–150 K) and electron–phonon scattering at higher temperatures (151–300 K). This study demonstrates that by appropriate tuning of the sputtering parameter, the magnetic properties of NiFe films can be directly modified as appropriate to the desired spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable response.

References

  1. S. Das Sarma, E.H. Hwang, A. Kaminski, How to make semiconductors ferromagnetic: a first course on spintronics. Solid State Commun. 127(2), 99–107 (2003). https://doi.org/10.1016/S0038-1098(03)00337-5

    Article  CAS  Google Scholar 

  2. E.E. Fullerton, J.R. Childress, Spintronics, magnetoresistive heads, and the emergence of the digital world. Proc. IEEE 104(10), 1787–1795 (2016). https://doi.org/10.1109/JPROC.2016.2567778

    Article  Google Scholar 

  3. A. Hirohata, K. Yamada, I. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  CAS  Google Scholar 

  4. N. Behera, H. Fulara, L. Bainsla, A. Kumar, M. Zahedinejad, A. Houshang, J. Akerman, Energy-efficient W100-xTax/Co-Fe-B/MgO spin hall nano-oscillators. Phys. Rev. Appl. 18(2), 024017 (2022). https://doi.org/10.1103/PhysRevApplied.18.024017

    Article  CAS  Google Scholar 

  5. S.-W. Lee, K.-J. Lee, Emerging three-terminal magnetic memory devices. Proc. IEEE 104(10), 1831–1843 (2016). https://doi.org/10.1109/JPROC.2016.2543782

    Article  Google Scholar 

  6. D. Apalkov, B. Dieny, J.M. Slaughter, Magnetoresistive random access memory. Proc. IEEE 104(10), 1796–1830 (2016). https://doi.org/10.1109/JPROC.2016.2590142

    Article  CAS  Google Scholar 

  7. M. Díaz de Sihues, C.A. Durante-Rincón, J.R. Fermin, A ferromagnetic resonance study of NiFe alloy thin films. J. Magn. Magn. Mater 316(2), e462–e465 (2007). https://doi.org/10.1016/j.jmmm.2007.02.181

    Article  CAS  Google Scholar 

  8. N.K. Gupta, V. Barwal, S. Hait, L. Pandey, V. Mishra, L. Saravanan, A. Kumar, N. Sharma, N. Kumar, S. Husain, S. Chaudhary, Impact of Argon working pressure on the magnetic properties of sputtered Co60Fe20B20 thin films. Thin Solid Films 756, 139355 (2022). https://doi.org/10.1016/j.tsf.2022.139355

    Article  CAS  Google Scholar 

  9. V. Barwal, S. Hait, N.K. Gupta, L. Pandey, V. Mishra, A. Kumar, N. Kumar, N. Sharma, R.M. Kumar, S. Chaudhary, Effect of stoichiometry and film thickness on the structural and magnetization dynamics behavior of Co2MnAl thin films cosputtered on Si (1 0 0). J. Magn. Magn. Mater. 552, 169246 (2022). https://doi.org/10.1016/j.jmmm.2022.169246

    Article  CAS  Google Scholar 

  10. V. Mishra, V. Barwal, L. Pandey, N.K. Gupta, S. Hait, A. Kumar, N. Sharma, N. Kumar, R.M. Kumar, S. Chaudhary, Investigation of spin gapless semiconducting behaviour in quaternary CoFeMnSi Heusler alloy thin films on Si (1 0 0). J. Magn. Magn. Mater. 547, 168837 (2022). https://doi.org/10.1016/j.jmmm.2021.168837

    Article  CAS  Google Scholar 

  11. S. Hait, S. Husain, V. Barwal, N.K. Gupta, L. Pandey, P. Svedlindh, S. Chaudhary, Comparison of high temperature growth versus post-deposition in situ annealing in attaining very low Gilbert damping in sputtered Co2FeAl Heusler alloy films. J. Magn. Magn. Mater. (2021). https://doi.org/10.1016/j.jmmm.2020.167509

    Article  Google Scholar 

  12. L. Saravanan, M.M. Raja, D. Prabhu, H.A. Therese, Influence of sputtering power on structural and magnetic properties of as-deposited, annealed and ERTA Co2FeSi films: a comparative study. Phys. B Condens. Matter. 531, 180–184 (2018). https://doi.org/10.1016/j.physb.2017.12.043

    Article  CAS  Google Scholar 

  13. P. Sakthivel, R. Murugan, S. Asaithambi, G. Vijayaprasath, S. Rajendran, Y. Hayakawa, G. Ravi, Radio frequency power induced changes of structural, morphological, optical and electrical properties of sputtered cadmium oxide thin films. Thin Solid Films 654, 85–92 (2018). https://doi.org/10.1016/j.tsf.2018.04.004

    Article  CAS  Google Scholar 

  14. T.C. Kim, S. Lee, H. Jung, Y. Kim, J. Choi, D. Yang, D. Kim, Effect of sputtering conditions on the structure and magnetic properties of self-assembled BiFeO3-CoFe2O4 nanocomposite thin films. J. Magn. Magn. Mater. 471, 116–123 (2019). https://doi.org/10.1016/j.jmmm.2018.09.059

    Article  CAS  Google Scholar 

  15. K. Wang, Y. Huang, Z. Xu, S. Dong, R. Chen, Effect of sputtering power on the magnetic properties of amorphous perpendicular TbFeCo films. J. Magn. Magn. Mater. 424, 89–92 (2017). https://doi.org/10.1016/j.jmmm.2016.10.047

    Article  CAS  Google Scholar 

  16. S. Husain, V. Barwal, A. Kumar, R. Gupta, N. Behera, S. Hait, N. Gupta, P. Svedlindh, S. Chaudhary, Multi-jump magnetization switching in Co2FeAl full Heusler alloy thin films: experiments and simulations. J. Magn. Magn. Mater. 486, 165258 (2019). https://doi.org/10.1016/j.jmmm.2019.165258

    Article  CAS  Google Scholar 

  17. V. Barwal, S. Husain, N. Behera, E. Goyat, S. Chaudhary, Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films. J. Appl. Phys. 123(5), 053901 (2018). https://doi.org/10.1063/1.5004425

    Article  CAS  Google Scholar 

  18. C. Zhou, T. Li, X. Wei, B. Yan, Effect of the sputtering power on the structure, morphology and magnetic properties of fe films. Metals (Basel) 10(7), 1–11 (2020). https://doi.org/10.3390/met10070896

    Article  CAS  Google Scholar 

  19. N. Behera, S. Chaudhary, D.K. Pandya, Anomalous anti-damping in sputtered β-Ta/Py bilayer system. Sci. Rep. (2016). https://doi.org/10.1038/srep19488

    Article  Google Scholar 

  20. S. Husain, S. Husain, A. Kumar, V. Barwal, N. Behera, S. Akansel, P. Svedlindh, S. Chaudhary, Spin pumping in ion-beam sputtered C o2FeAl/Mo bilayers: Interfacial Gilbert damping. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.064420

    Article  Google Scholar 

  21. V.V. Kondalkara, X. Lia, S. Yanga, K. Leea, Current sensor based on nanocrystalline NiFe/Cu/NiFe thin film. Procedia. Eng. 168, 675–679 (2016). https://doi.org/10.1016/j.proeng.2016.11.245

    Article  CAS  Google Scholar 

  22. N. Behera, A. Kumar, S. Chaudhary, D.K. Pandya, Two magnon scattering and anti-damping behavior in a two-dimensional epitaxial TiN/Py(t Py )/β-Ta(t Ta ) system. RSC Adv. 7(14), 8106–8117 (2017). https://doi.org/10.1039/C6RA25980D

    Article  CAS  Google Scholar 

  23. N. Patra, C. Prajapat, P. Babu, S. Rai, S. Kumar, S. Jha, D. Bhattacharyya, Effect of growth temperature on the structural and magnetic properties of the pulsed laser deposited Co2FeAl thin films. J. Alloys Compd. 779, 648–659 (2019). https://doi.org/10.1016/j.jallcom.2018.11.246

    Article  CAS  Google Scholar 

  24. A.L. Patterson, The scherrer formula for I-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  25. E. Alfonso, J. Olaya, G. Cubillos, “Thin film growth through sputtering technique and its applications”, crystallization - science and technology. INTECH (2012). https://doi.org/10.5772/35844

    Article  Google Scholar 

  26. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (Wiley, IEEE Press, 2008)

  27. M.A.W. Schoen, H. Nembach, T. Silva, B. Koopmans, C. Back, J. Shaw, Magnetic properties of ultrathin 3d transition-metal binary alloys. I. Spin and orbital moments, anisotropy, and confirmation of slater-pauling behavior. Phys. Rev. B (2017). https://doi.org/10.1103/PhysRevB.95.134410

    Article  Google Scholar 

  28. S. Hait, N.K. Gupta, N. Sharma, L. Pandey, V. Barwal, P. Kumar, S. Chaudhary, Spin pumping in nanolayers of WS 2 /Co 2 FeAl heterostructures: large spin mixing conductance and spin transparency. J. Appl. Phys. 132(13), 133901 (2022). https://doi.org/10.1063/5.0107655

    Article  CAS  Google Scholar 

  29. S. Hait, S. Husian, N. Kumar Gupta, N. Behera, A. Kumar, R. Gupta, V. Barwal, L. Pandey, P. Svedlindh, S. Chaudhary, Impact of ferromagnetic layer thickness on the spin pumping in Co60Fe20B20/Ta bilayer thin films. J. Mater. Sci.: Mater. Electron. 32(9), 12453–12465 (2021). https://doi.org/10.1007/s10854-021-05876-9

    Article  CAS  Google Scholar 

  30. S. Hait, V. Barwal, N. Kumar Gupta, L. Pandey, N. Sharma, S. Chaudhary, Temperature-dependent magnetoresistance in polycrystalline Ni 81 Fe 19 thin film on Si (100). J. Supercond. Novel Magn. 34(9), 845–850 (2021). https://doi.org/10.1007/s10948-020-05783-w

    Article  CAS  Google Scholar 

  31. S. Hait, S. Husian, V. Barwal, L. Pandey, N. Sharma, N.K. Gupta, S. Chaudhary, High spin mixing conductance and spin transparency in ion-beam sputtered Ta/Co60Fe20B20 bilayers on Si (100). Surf. Interfaces 33, 102259 (2022). https://doi.org/10.1016/j.surfin.2022.102259

    Article  CAS  Google Scholar 

  32. N. Behera, M.S. Singh, S. Chaudhary, D.K. Pandya, P.K. Muduli, Effect of Ru thickness on spin pumping in Ru/Py bilayer. J. Appl. Phys. 117(17), 17A714 (2015). https://doi.org/10.1063/1.4913510

    Article  CAS  Google Scholar 

  33. E. Goyat, N. Behera, V. Barwal, R. Siwach, G. Goyat, N.K. Gupta, L. Pandey, N. Kumar, S. Hait, S. Chaudhary, Large exchange bias and spin pumping in ultrathin IrMn/Co system for spintronic device applications. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.152914

    Article  Google Scholar 

  34. E. Goyat, S. Hait, V. Barwal, G. Goyat, R. Siwach, S. Chaudhary, Investigation of magnetic anisotropy and damping in obliquely sputtered cobalt thin films. J. Supercond. Nov. Magn. 35(7), 2029–2036 (2022). https://doi.org/10.1007/s10948-022-06243-3

    Article  CAS  Google Scholar 

  35. C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73(2), 155–161 (1948). https://doi.org/10.1103/PhysRev.73.155

    Article  CAS  Google Scholar 

  36. G.M. Sandler, H.N. Bertram, T.J. Silva, T.M. Crawford, Determination of the magnetic damping constant in NiFe films. J. Appl. Phys. 85, 5080 (1999)

    Article  CAS  Google Scholar 

  37. D. Jhajhria, D.K. Pandya, S. Chaudhary, Orbital moment probed spin orbit coupling effects on anisotropy and damping in CoFeB thin films. RSC Adv. 6(97), 94717–94722 (2016). https://doi.org/10.1039/c6ra19837f

    Article  CAS  Google Scholar 

  38. S.S. Kalarickal, P. Krivosik, M. Wu, C.E. Patton, M.L. Schneider, P. Kabos, T.J. Silva, Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J. Appl. Phys. 99(9), 093909 (2006). https://doi.org/10.1063/1.2197087

    Article  CAS  Google Scholar 

  39. S.S. Kalarickal, P. Krivosik, J. Das, K.S. Kim, C.E. Patton, Microwave damping in polycrystalline Fe-Ti-N films: physical mechanisms and correlations with composition and structure. Phys. Rev. B Condens. Matter. Mater. Phys. (2008). https://doi.org/10.1103/PhysRevB.77.054427

    Article  Google Scholar 

  40. S. Hait, V. Barwal, N. Kumar Gupta, L. Pandey, V. Mishra, S. Chaudhary, Influence of annealing temperature and capping layer on the structural, magnetic and transport properties of ion beam sputtered Co2FeAl thin films on Si (1 0 0). Appl. Surf. Sci. 572, 151423 (2022). https://doi.org/10.1016/j.apsusc.2021.151423

    Article  CAS  Google Scholar 

  41. M.S. Gabor, M. Belmeguenai, T. Petrisor, C. Ulhaq-Bouillet, S. Colis, C. Tiusan, Correlations between structural, electronic transport, and magnetic properties of Co2FeAl0.5Si0.5 Heusler alloy epitaxial thin films. Phys. Rev. B 92(5), 054433 (2015). https://doi.org/10.1103/PhysRevB.92.054433

    Article  CAS  Google Scholar 

  42. D.A. Goodings, Electrical resistivity of ferromagnets at low temperatures. J. Appl. Phys. 34(4), 1370–1371 (1963). https://doi.org/10.1063/1.1729515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the contributing authors (E.G.) acknowledges the Physics Department XRD facility for X-ray diffraction and X-ray reflectivity measurements. Nanoscale Research Facility (NRF), IIT Delhi are also acknowledged for the EDX measurement.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EG: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Methodology (lead); Visualization (equal); Writing—original draft (lead). LP: Data curation (equal); Methodology (equal); Formal analysis (equal) SH: Formal analysis (supporting). NKG: Data curation (supporting); Formal analysis (supporting). VM: Data curation (supporting). NK: Data curation (supporting). HS: Data curation (supporting). NS: Data curation. SC: Resources (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing—review & editing (equal).

Corresponding author

Correspondence to Sujeet Chaudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyat, E., Pandey, L., Hait, S. et al. Effect of the growth rate on the structural, magnetic and transport properties of NiFe thin films. J Mater Sci: Mater Electron 34, 1111 (2023). https://doi.org/10.1007/s10854-023-10372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10372-3

Navigation