Skip to main content
Log in

Impact of ferromagnetic layer thickness on the spin pumping in Co60Fe20B20/Ta bilayer thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the tuneable spin angular momentum transfer (spin pumping) from Co60Fe20B20 (CFB) amorphous alloy into the Ta heavy metal nanolayers. All the films are grown on Si (100) substrate at room temperature using ion-beam sputtering technique. Structural studies reveal that the grown Ta films over amorphous CFB are crystalline even at ultrathin regime. The bilayers possess very low interface roughness (< 0.5 nm) and are continuous throughout the thickness range. Comparative analysis of the spin pumping in CFB (4, 6 and 8 nm) as a function of the Ta thickness (vary from 1 to 10 nm in step of 1 nm) has been performed employing ferromagnetic resonance (FMR) spectroscopy. It is observed that the effective damping increase exponentially with the increase of Ta, (i.e. follows ballistic spin transport) in two series of CFB (4 nm)/Ta (0–10 nm) and CFB(6 nm)/Ta (0–10 nm) bilayers, which is characteristic of normal spin pumping. However, the anomalous behaviour has been observed for CFB (8 nm)/Ta (0–10 nm) bilayer series where the spin current generated in Ta with the thicker CFB behaves oppositely. The results demonstrate the strong dependence of ferromagnet thickness on the spin pumping into the Ta nanolayers. This study paves the way to choose suitable ferromagnetic layer thickness for spin current-induced switching applications in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Jamali, A. Klemm, J.P. Wang, Precessional magnetization induced spin current from CoFeB into Ta. Appl. Phys. Lett. 103, 252409 (2013). https://doi.org/10.1063/1.4853195

    Article  CAS  Google Scholar 

  2. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B. 66, 224403 (2002). https://doi.org/10.1103/PhysRevB.66.224403

    Article  CAS  Google Scholar 

  3. A. Conca, B. Heinz, M.R. Schweizer, S. Keller, E.T. Papaioannou, B. Hillebrands, Lack of correlation between the spin-mixing conductance and the inverse spin Hall effect generated voltages in CoFeB/Pt and CoFeB/Ta bilayers. Phys. Rev. B. 95, 174426 (2017). https://doi.org/10.1103/PhysRevB.95.174426

    Article  Google Scholar 

  4. Z. Zhu, B. Zhao, W. Zhu, M. Tang, Y. Ren, Q.Y. Jin, Z. Zhang, Annealing effect and interlayer modulation on magnetic damping of CoFeB/interlayer/Pt thin films. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5050445

    Article  Google Scholar 

  5. D.-J. Kim, S.-I. Kim, S.-Y. Park, K.-D. Lee, B.-G. Park, Ferromagnetic resonance spin pumping in CoFeB with highly resistive non-magnetic electrodes. Curr. Appl. Phys. 14, 1344–1348 (2014). https://doi.org/10.1016/j.cap.2014.07.013

    Article  Google Scholar 

  6. A. Kumar, S. Akansel, H. Stopfel, M. Fazlali, J. Akerman, R. Brucas, P. Svedlindh, Spin transfer torque ferromagnetic resonance induced spin pumping in the Fe/Pd bilayer system. Phys. Rev. B. 95, 6–12 (2017). https://doi.org/10.1103/PhysRevB.95.064406

    Article  Google Scholar 

  7. C. He, A. Navabi, Q. Shao, G. Yu, D. Wu, W. Zhu, C. Zheng, X. Li, Q.L. He, S.A. Razavi, K.L. Wong, Z. Zhang, P.K. Amiri, K.L. Wang, Spin-torque ferromagnetic resonance measurements utilizing spin Hall magnetoresistance in W/Co40Fe40B20/MgO structures. Appl. Phys. Lett. 109, 202404 (2016). https://doi.org/10.1063/1.4967843

    Article  CAS  Google Scholar 

  8. D. Jhajhria, N. Behera, D.K. Pandya, S. Chaudhary, Dependence of spin pumping in W/CoFeB heterostructures on the structural phase of tungsten. Phys. Rev. B. 99, 1–8 (2019). https://doi.org/10.1103/PhysRevB.99.014430

    Article  Google Scholar 

  9. S.N. Panda, S. Majumder, A. Bhattacharyya, S. Dutta, S. Choudhury, A. Barman, Structural phase dependent giant interfacial spin transparency in W/CoFeB thin film heterostructure (2020), http://arxiv.org/abs/2009.14143

  10. N. Behera, S. Chaudhary, D.K. Pandya, Anomalous anti-damping in sputtered β-Ta/Py bilayer system. Sci. Rep. 6, 19488 (2016). https://doi.org/10.1038/srep19488

    Article  CAS  Google Scholar 

  11. S. Akansel, A. Kumar, N. Behera, S. Husain, R. Brucas, S. Chaudhary, P. Svedlindh, Thickness-dependent enhancement of damping in Co2FeAl/β -Ta thin films. Phys. Rev. B 97, 1–8 (2018). https://doi.org/10.1103/PhysRevB.97.134421

    Article  Google Scholar 

  12. A. Kumar, R. Gupta, S. Husain, N. Behera, S. Hait, S. Chaudhary, R. Brucas, P. Svedlindh, Spin pumping and spin torques in interfacially tailored Co2FeAl/β -Ta layers. Phys. Rev. B 100, 1–8 (2019). https://doi.org/10.1103/PhysRevB.100.214433

    Article  Google Scholar 

  13. O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010). https://doi.org/10.1103/PhysRevB.82.214403

    Article  CAS  Google Scholar 

  14. S. Husain, A. Kumar, V. Barwal, N. Behera, S. Akansel, P. Svedlindh, S. Chaudhary, Spin pumping in ion-beam sputtered Co 2 FeAl / Mo bilayers: Interfacial Gilbert damping. Phys. Rev. B. 064420(2018), 2–9 (2018). https://doi.org/10.1103/PhysRevB.97.064420

    Article  Google Scholar 

  15. M. Morota, Y. Niimi, K. Ohnishi, D.H. Wei, T. Tanaka, H. Kontani, T. Kimura, Y. Otani, Indication of intrinsic spin Hall effect in4d and 5d transition metals. Phys. Rev. B 83, 174405 (2011). https://doi.org/10.1103/PhysRevB.83.174405

    Article  CAS  Google Scholar 

  16. S.D. Stranks, P. Plochocka, The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018). https://doi.org/10.1038/s41563-018-0067-8

    Article  CAS  Google Scholar 

  17. K.-W. Kim, S.-M. Seo, J. Ryu, K.-J. Lee, H.-W. Lee, Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin-orbit coupling. Phys. Rev. B 85, 180404 (2012). https://doi.org/10.1103/PhysRevB.85.180404

    Article  CAS  Google Scholar 

  18. H. Noh, S. Lee, S.H. Chun, H.C. Kim, L.N. Pfeiffer, K.W. West, Measurement of the intrinsic anomalous hall effect in a 2D hole system with rashba spin-orbit coupling. J. Korean Phys. Soc. 57, 1933 (2010). https://doi.org/10.3938/jkps.57.1933

    Article  CAS  Google Scholar 

  19. G. Allen, S. Manipatruni, D.E. Nikonov, M. Doczy, I.A. Young, Experimental demonstration of the coexistence of spin Hall and Rashba effects in b-Ta/ferromagnets bilayers. Phys. Rev. B. 91, 144412 (2015). https://doi.org/10.1103/PhysRevB.91.144412

    Article  CAS  Google Scholar 

  20. Q. Shao, G. Yu, Y.-W. Lan, Y. Shi, M.-Y. Li, C. Zheng, X. Zhu, L.-J. Li, P.K. Amiri, K.L. Wang, Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016). https://doi.org/10.1021/acs.nanolett.6b03300

    Article  CAS  Google Scholar 

  21. P.M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M.D. Stiles, Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013). https://doi.org/10.1103/PhysRevB.87.174411

    Article  CAS  Google Scholar 

  22. S.X. Huang, T.Y. Chen, C.L. Chien, Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 92, 242509 (2008). https://doi.org/10.1063/1.2949740

    Article  CAS  Google Scholar 

  23. F. Te Yuan, Y.H. Lin, J.K. Mei, J.H. Hsu, P.C. Kuo, Effect of thickness of MgO, Co-Fe-B, and Ta layers on perpendicular magnetic anisotropy of [Ta/Co60Fe20B 20/MgO]5 multilayered films. J. Appl. Phys. 111, 7–10 (2012). https://doi.org/10.1063/1.3673408

    Article  CAS  Google Scholar 

  24. J.M. Shaw, H.T. Nembach, M. Weiler, T.J. Silva, M. Schoen, J.Z. Sun, D.C. Worledge, Perpendicular magnetic anisotropy and easy cone state in Ta/Co60Fe20B20/MgO. IEEE Magn. Lett. (2015). https://doi.org/10.1109/LMAG.2015.2438773

    Article  Google Scholar 

  25. S. Hait, S. Husain, V. Barwal, N.K. Gupta, L. Pandey, P. Svedlindh, S. Chaudhary, Comparison of high temperature growth versus post-deposition in situ annealing in attaining very low Gilbert damping in sputtered Co2FeAl Heusler alloy films. J. Magn. Magn. Mater. 519, 167509 (2021). https://doi.org/10.1016/j.jmmm.2020.167509

    Article  CAS  Google Scholar 

  26. S. Husain, N.K. Gupta, V. Barwal, S. Chaudhary, Magneto-optical properties of CoFeB ultrathin films: effect of Ta buffer and capping layer, in: AIP Conf. Proc., 2018: p. 120048. doi: https://doi.org/10.1063/1.5033113.

  27. Y.T. Chen, C.C. Chang, Effect of grain size on magnetic and nanomechanical properties of Co60Fe20B20 thin films. J. Alloys Compd. 498, 113–117 (2010). https://doi.org/10.1016/j.jallcom.2010.03.141

    Article  CAS  Google Scholar 

  28. L. Kipgen, H. Fulara, M. Raju, S. Chaudhary, In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB. J. Magn. Magn. Mater. 324, 3118–3121 (2012). https://doi.org/10.1016/j.jmmm.2012.05.012

    Article  CAS  Google Scholar 

  29. A. Jiang, T.A. Tyson, L. Axe, L. Gladczuk, M. Sosnowski, P. Cote, The structure and stability of β-Ta thin films. Thin Solid Films 479, 166–173 (2005). https://doi.org/10.1016/j.tsf.2004.12.006

    Article  CAS  Google Scholar 

  30. E.A.I. Ellis, M. Chmielus, S.P. Baker, Effect of sputter pressure on Ta thin films: beta phase formation, texture, and stresses. Acta Mater. 150, 317–326 (2018). https://doi.org/10.1016/j.actamat.2018.02.050

    Article  CAS  Google Scholar 

  31. M. Cecot, Ł Karwacki, W. Skowroński, J. Kanak, J. Wrona, A. Zywczak, L. Yao, S. Dijken, J. Barnaś, T. Stobiecki, Influence of intermixing at the Ta/CoFeB interface on spin Hall angle in Ta/CoFeB/MgO heterostructures. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-00994-z

    Article  CAS  Google Scholar 

  32. M. Raju, N. Behera, D.K. Pandya, S. Chaudhary, Magnetization dynamics and interface studies in ion-beam sputtered Si/CoFeB(8)/MgO(4)/CoFeB(8)/Ta(5) structures. J. Appl. Phys. 115, 17D127 (2014). https://doi.org/10.1063/1.4863804

    Article  CAS  Google Scholar 

  33. L. Jin, K. Jia, D. Zhang, B. Liu, H. Meng, X. Tang, Z. Zhong, H. Zhang, Effect of interfacial roughness spin scattering on the spin current transport in YIG/NiO/Pt Heterostructures. ACS Appl. Mater. Interfaces. 11, 35458–35467 (2019). https://doi.org/10.1021/acsami.9b12125

    Article  CAS  Google Scholar 

  34. L.H. Bai, Y.S. Gui, A. Wirthmann, E. Recksiedler, N. Mecking, C.-M. Hu, Z.H. Chen, S.C. Shen, The rf magnetic-field vector detector based on the spin rectification effect. Appl. Phys. Lett. 92, 032504 (2008). https://doi.org/10.1063/1.2837180

    Article  CAS  Google Scholar 

  35. C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948). https://doi.org/10.1103/PhysRev.73.155

    Article  CAS  Google Scholar 

  36. G. Lu, X. Huang, S. Fan, W. Ling, M. Liu, J. Li, L. Jin, L. Pan, Temperature-and thickness -dependent dynamic magnetic properties of sputtered CoFeB/Ta bilayer films. J. Alloys Compd. 753, 475–482 (2018). https://doi.org/10.1016/j.jallcom.2018.04.262

    Article  CAS  Google Scholar 

  37. A. Gayen, R. Modak, A. Srinivasan, V.V. Srinivasu, P. Alagarsamy, Thickness dependent magneto-static and magneto-dynamic properties of CoFeB thin films. J. Vac. Sci. Technol. A. 37, 031513 (2019). https://doi.org/10.1116/1.5091675

    Article  CAS  Google Scholar 

  38. N. Behera, P. Guha, D.K. Pandya, S. Chaudhary, Capping Layer (CL) Induced antidamping in CL/Py/β-W system (CL: Al, β-Ta, Cu, β-W). ACS Appl. Mater. Interfaces. 9, 31005–31017 (2017). https://doi.org/10.1021/acsami.7b06991

    Article  CAS  Google Scholar 

  39. S.N. Panda, S. Mondal, J. Sinha, S. Choudhury, A. Barman, All-optical detection of interfacial spin transparency from spin pumping in β-Ta/CoFeB thin films. Sci. Adv. 5, eaav7200 (2019). https://doi.org/10.1126/sciadv.aav7200

    Article  CAS  Google Scholar 

  40. J.M. Shaw, H.T. Nembach, T.J. Silva, Determination of spin pumping as a source of linewidth in sputtered CoFe/Pd multilayers by use of broadband ferromagnetic resonance spectroscopy. Phys. Rev. B 85, 054412 (2012). https://doi.org/10.1103/PhysRevB.85.054412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Hait acknowledges the Ministry of Education, Government of India, for the financial support. S. Husian acknowledges the Department of Science and Technology, Government of India for providing the INSPIRE Fellowship (IF140093). Carl Tryggers Stiftelse for Vetenskaplig Forskning (Grant No: CTS 17:450) is gratefully acknowledged for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujeet Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hait, S., Husain, S., Gupta, N.K. et al. Impact of ferromagnetic layer thickness on the spin pumping in Co60Fe20B20/Ta bilayer thin films. J Mater Sci: Mater Electron 32, 12453–12465 (2021). https://doi.org/10.1007/s10854-021-05876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05876-9

Navigation