Skip to main content
Log in

Effect of Bias Voltage and Deposition Rate on the Structure and Coercivity of NiFe Films

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the bias voltage Ub and the deposition rate \({v}\) on the structure, grain size D, and coercivity Hc of NiFe films with a thickness d from 30 to 980 nm, grown on Si/SiO2 substrates by DC magnetron sputtering, has been studied. In the case of Ub = 0, a decrease in \({v}\) from values \({v}\) ≈ 27 to ≈7 nm/min is accompanied by an increase in the values of the critical film thickness dcr from dcr ≈ 220 nm to dcr ≈ 270 nm. In this case, Hc in films with d < dcr is characterized by the dependence Hc ~ D6 and varies from ~1 to ~20 Oe. For Ub = –100 V, the effect of the deposition rate on the coercivity is much more noticeable. At \({v}\) = 7 and 14 nm/min, the films exhibit soft magnetic properties (Hc ≈ 0.15–1.4 Oe) and the absence of dcr for the entire range of studied thicknesses. The films obtained at \({v}\) = 21 and 27 nm/min pass into the “supercritical” state at ddcr ≈ 520 nm, and in the range d < dcr they are characterized by the dependence Hc ~ D3 and an increase in the coercivity from ~0.35 to ~10 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Electrochemical Nanotechnologies, Ed. by T. Osaka, M. Datta, and Y. Shacham-Diamand (Springer, Berlin, 2009).

    Google Scholar 

  2. B. G. Livshits, V. S. Kraposhin, and Ya. L. Linetskii, Physical Properties of Metals and Alloys (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  3. E. Klokholm and J. A. Aboaf, J. Appl. Phys. 52, 2474 (1981).

    Article  ADS  Google Scholar 

  4. N. Amos, R. Fernandez, R. Ikkawi, B. Lee, A. Lavrenov, A. Krichevsky, D. Litvinov, and S. Khizroev, J. Appl. Phys. 103, 07E732 (2008).

  5. W. T. Soh, N. N. Phuoc, C. Y. Tan, and C. K. Ong, J. Appl. Phys. 114, 053908 (2013).

    Article  ADS  Google Scholar 

  6. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).

    Article  ADS  Google Scholar 

  7. G. Wang, C. Dong, W. Wang, Z. Wang, G. Chai, C. Jiang, and D. Xue, J. Appl. Phys. 112, 093907 (2012).

    Article  ADS  Google Scholar 

  8. M. A. Akhter, D. J. Mapps, Y. Q. Ma Tan, Amanda Petford-Long, and R. Doole, J. Appl. Phys. 81, 4122 (1997).

    Article  ADS  Google Scholar 

  9. Y. Sugita, H. Fujiwara, and T. Sato, Appl. Phys. Lett. 10, 229 (1967).

    Article  ADS  Google Scholar 

  10. G. Herzer, Acta Mater. 61, 718 (2013).

    Article  ADS  Google Scholar 

  11. V. Svalov, G. V. Kurlyandskaya, B. González Asensio, J. M. Collantes, and A. Larrañaga, Mater. Lett. 52, 159 (2015).

    Article  Google Scholar 

  12. X. Li, X. Sun, J. Wang, and Q. Liu, J. Magn. Magn. Mater. 377, 142 (2015).

    Article  ADS  Google Scholar 

  13. A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fernández-Gubieda, and G. V. Kurlyandskaya, IEEE Trans. Magn. 46, 333 (2010).

    Article  ADS  Google Scholar 

  14. Y. Hoshi, M. Kojima, M. Naoe, and S. Yamanaka, IEEE Trans. Magn. 18, 1433 (1982).

    Article  ADS  Google Scholar 

  15. A. V. Svalov, B. Gonzalez Asensio, A. A. Chlenova, P. A. Savin, A. Larranaga, J. M. Gonzalez, and G. V. Kurlyandskaya, Vacuum 119, 245 (2015).

    Article  ADS  Google Scholar 

  16. K. Suzuki, G. Herzer, and J. M. Cadogan, J. Magn. Magn. Mater. 177–181, 949 (1998).

    Article  ADS  Google Scholar 

  17. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Ki-shimoto, T. Shoji, and A. Kato, AIP Adv. 9, 035311 (2019).

    Article  ADS  Google Scholar 

  18. H. Cheng and M. Hon, J. Appl. Phys. 79, 8047 (1996).

    Article  ADS  Google Scholar 

  19. A. S. Dzhumaliev, Yu. Nikulin, and Yu. Filimonov, in Proceedings of the 7th Moscow International Symposium on Magnetism MISM, 2017, p. 778.

  20. A. S. Dzhumaliev, Yu. V. Nikulin, and Yu. A. Filimonov, Phys. Solid State 58, 1053 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The work was performed on the state assignment no. 0030-2019-0013 “Spintronics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dzhumaliev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumaliev, A.S., Vysotskii, S.L. & Sakharov, V.K. Effect of Bias Voltage and Deposition Rate on the Structure and Coercivity of NiFe Films. Phys. Solid State 62, 2439–2444 (2020). https://doi.org/10.1134/S1063783420120094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420120094

Keywords:

Navigation