Skip to main content
Log in

Enhancing the optical, temperature-dependent electrical and dielectric properties of WO3 through Fe doping for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

WO3 nanoparticles doped with various Fe concentrations were prepared via acid-assisted precipitation method. The XRD patterns confirmed the monoclinic arrangement, and the crystallite size decreased on increasing the dopant concentration. The surface characterizations performed using SEM images and the EDS spectra exposed the particle size and effective doping of Fe3+ ions within the host lattices of WO3. The local structure and crystal quality were studied by FTIR and Raman spectra. From the absorption spectra, doping of Fe decreases the optical band-gap energy and a rise in Urbach energies. The increase in green emission intensities of photoluminescence spectra reveals the increasing oxygen vacancies in WO3 after doping. The temperature-dependent AC and DC conductivities were enhanced on increasing the Fe concentration. The dielectric parameters were elucidated on the basis of Maxwell–Wagner theory which depends on dopant composition. On the whole, the electrical properties of WO3 can be improved by doping with Fe ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. C.S. Wang, B.M. Klein, First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS and ZnSe. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B 24, 3393–3416 (1981). doi:https://doi.org/10.1103/PhysRevB.24.3393

    Article  CAS  Google Scholar 

  2. N. Algethami, A. Rajeh, H.M. Ragab, A.E. Tarabiah, F. Gami, Characterization, optical, and electrical properties of chitosan/polyacrylamide blend doped silver nanoparticles. J. Mater. Sci.: Mater. Electron. 33, 10645–10656 (2022). https://doi.org/10.1007/s10854-022-08048-5

    Article  CAS  Google Scholar 

  3. G.C. Wheeler, P. Castellazzi, A. Watson, A.J. Effah, Semiconductor devices in solid state/hybrid circuit breakers: current status and future trends. Energies 10, 495 (2017). https://doi.org/10.3390/en10040495

    Article  Google Scholar 

  4. Z. Zhou, C. Lan, R. Wei, J.C. Ho, Transparent metal-oxide nanowires and their applications in Harsh Electronics. J. Mater. Chem. C 7, 202–217 (2019). doi:https://doi.org/10.1039/C8TC04501A

    Article  CAS  Google Scholar 

  5. R. Medhi, M.D. Marquez, T.R. Lee, Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl. Nano Mater. 3, 6156–6185 (2020). https://doi.org/10.1021/acsanm.0c01035

    Article  CAS  Google Scholar 

  6. P.G. Neudeck, R.S. Okojie, L.Y. Chen, High-temperature electronics—a role for wide bandgap semiconductors? Proc. IEEE 90, 1065–1076 (2002). https://doi.org/10.1109/JPROC.2002.1021571

    Article  Google Scholar 

  7. W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. RSC Adv. 4, 36064–36070 (2014). https://doi.org/10.1039/C4RA04080E

    Article  CAS  Google Scholar 

  8. S. Sun, W. Wang, S. Zeng, M. Shang, L. Zhang, Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. J. Hazard. Mater. 178, 427–433 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.098

    Article  CAS  Google Scholar 

  9. F. Mehmood, J. Iqbal, T. Jan, W. Ahmed, W. Ahmed, A. Arshad, Q. Mansoor, S.Z. Ilyas, M. Ismail, I. Ahmad, Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates. Ceram. Int. 42, 14334–14341 (2016). https://doi.org/10.1016/J.CERAMINT.2016.04.010

    Article  CAS  Google Scholar 

  10. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, A. Ghulam Yasin, I. Baykal, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  11. R.S. Vemuri, K.K. Bharathi, S.K. Gullapalli, C.V. Ramana, Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl. Mater. Interfaces 2, 2623–2628 (2010). https://doi.org/10.1021/am1004514

    Article  CAS  Google Scholar 

  12. M.M. El-Nahass, H.A.M. Ali, M. Saadeldin, M. Zaghllol, AC conductivity and dielectric properties of bulk tungsten trioxide (WO3). Phys. B Condens Matter. 407, 4453–4457 (2012). https://doi.org/10.1016/j.physb.2012.07.043

    Article  CAS  Google Scholar 

  13. I.I. Shaltout, Y.I. Tang, R. Braunstein, E.E. Shaisha, FTIR spectra and some optical properties of tungstate-tellurite glasses. J. Phys. Chem. Solids 57, 1223–1230 (1996). doi:https://doi.org/10.1016/0022-3697(95)00309-6

    Article  CAS  Google Scholar 

  14. A. Mora, P. Verma, S. Kumar, Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos. B Eng. 183, 107600 (2020). https://doi.org/10.1016/j.compositesb.2019.107600

    Article  CAS  Google Scholar 

  15. W. Wang, A. Janotti, C.G. Van de Walle, Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641–6648 (2016)

    Article  CAS  Google Scholar 

  16. X.D. Liu, Q. Yang, L. Yuan, D. Qi, X. Wei, X. Zhou, S. Chen, L. Cao, Y. Zeng, J. Jia, C. Wang, Oxygen vacancy-rich WO3 heterophase structure: a trade-off between surface-limited pseudocapacitance and intercalation-limited behavior. Chem. Eng. J. 425, 131431 (2021). https://doi.org/10.1016/j.cej.2021.131431

    Article  CAS  Google Scholar 

  17. S. Corby, L. Franc`, A. Kafizas, J.R. Durrant, Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation. Chem. Sci. 11, 2907–2914 (2020). https://doi.org/10.1039/C9SC06325K

    Article  CAS  Google Scholar 

  18. Z. Shen, Z. Zhao, J. Wen, J. Qian, Z. Peng, X. Fu, Role of oxygen vacancies in the electrical properties of WO3–x nano/microrods with identical morphology. J. Nanometer. (2018). https://doi.org/10.1155/2018/7802589

    Article  Google Scholar 

  19. Z.G. Zhao, M. Miyauchi, Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem. Int. Ed. 47, 7051–7055 (2008). https://doi.org/10.1039/C6TC01643J

    Article  CAS  Google Scholar 

  20. H.M. Alghamdi, M.M. Abutalib, M.A. Mannaa, O. Nur, E.M. Abdelrazek, A. Rajeh, Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications. J. Mater. Res. Technol. 19, 3421–3432 (2022). https://doi.org/10.1016/j.jmrt.2022.06.077

    Article  CAS  Google Scholar 

  21. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019). https://doi.org/10.1002/anie.200802207

    Article  CAS  Google Scholar 

  22. S.S. Kalanur, Y.G. Noh, H. Seo, Engineering band edge properties of WO3 with respect to photoelectrochemical water splitting potentials via a generalized doping protocol of first-row transition metal ions. Appl. Surf. Sci. 509, 145253 (2020). https://doi.org/10.1016/j.apsusc.2020.145253

    Article  CAS  Google Scholar 

  23. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 129, 110884 (2020). https://doi.org/10.1016/j.materresbull.2020.110884

    Article  CAS  Google Scholar 

  24. L. Sun, C.H. Hendon, S.S. Park, Y. Tulchinsky, R. Wan, F. Wang, A. Walsh, M. Dincă, Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 8, 4450–4457 (2017). https://doi.org/10.1039/C7SC00647K

    Article  CAS  Google Scholar 

  25. E.M. Ngigi, P.N. Nomngongo, J.C. Ngila, Synthesis and application of Fe-Doped WO3 nanoparticles for photocatalytic degradation of Methylparaben using visible–light Radiation and H2O2. Catal. Lett. 149, 49–60 (2019). https://doi.org/10.1007/s10562-018-2594-y

    Article  CAS  Google Scholar 

  26. H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B 166–167, 112–120 (2015). doi:https://doi.org/10.1016/j.apcatb.2014.11.020

    Article  CAS  Google Scholar 

  27. S. Ramkumar, G. Rajarajan, Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films. J. Mater. Sci.: Mater. Electron. 27, 1847–1853 (2016). https://doi.org/10.1007/s10854-015-3963-6

    Article  CAS  Google Scholar 

  28. G. Pitak, S. Srisodsai, M. Termtanun, Effect of doping Fe/Cu/Ti on WO3 on furfural degradation. MATEC Web Conf. 192, 03048 (2018)

    Article  Google Scholar 

  29. C.R. Rajalakshmi, S. Sivaselvam, N. Ponpandian, Chitosan grafted Fe-doped WO3 decorated with gold nanoparticles for stimuli-responsive drug delivery systems. Mater. Lett. 304, 130664 (2021). https://doi.org/10.1016/j.matlet.2021.130664

    Article  CAS  Google Scholar 

  30. D.G. Thirumoorthi, B. Gnanavel, M. Kalaivani, A. Ragunathan, H. Venkatesan, Suitability of iron (Fe)-doped tungsten oxide (WO3) nanomaterials for photocatalytic and antibacterial applications. Int. J. Nanosci. (2021). https://doi.org/10.1142/S0219581X21500423

    Article  Google Scholar 

  31. R. Sivakumar, A.M.E. Raj, B. Subramanian, M. Jayachandran, D.C. Trivedi, C. Sanjeeviraja, Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater. Res. Bull. 39, 1479–1489 (2004). https://doi.org/10.1016/j.materresbull.2004.04.023

    Article  CAS  Google Scholar 

  32. T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng, Q. Xue, S. Yang, Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7, 2933–2940 (2015). doi:https://doi.org/10.1039/C4NR07024K

    Article  CAS  Google Scholar 

  33. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014). https://doi.org/10.1007/s10854-013-1637-9

    Article  CAS  Google Scholar 

  34. M. Yang, F. Lu, T. Zhou, J. Zhaod, C. Ding, A. Fakhrif, V.K. Gupta, Biosynthesis of nano bimetallic Ag/Pt alloy from Crocus sativus L. extract: biological efficacy and catalytic activity. J. Photochem. Photobiol. B 212, 112025 (2020). https://doi.org/10.1016/j.jphotobiol.2020.112025

    Article  CAS  Google Scholar 

  35. I. Aslam, M.H. Farooq, M.W. Iqbal, R. Boddula, M. Abid, M. Ashfaq, U. Ghani, Synthesis of WO3.H2O spherical particles for efficient photocatalytic properties under visible light source. Mater. Sci. Ener. Tech. 2, 187–193 (2019). https://doi.org/10.1016/j.mset.2019.02.002

    Article  Google Scholar 

  36. W. Jiang, K. Yang, W.R. Vachet, B. Xing, Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir 26, 18071–18077 (2010). https://doi.org/10.1021/la103738e

    Article  CAS  Google Scholar 

  37. M.V. Pellow-Jarman, P.J. Hendra, R.J. Lehnert, The dependence of Raman signal intensity on particle size for crystal powders. Vib. Spectrosc. 12, 257–261 (1996). https://doi.org/10.1016/0924-2031(96)00023-9

    Article  CAS  Google Scholar 

  38. Y. Yang, M.A. Ashraf, A. Fakhri, V.K. Gupta, D. Zhang, Facile synthesis of gold-silver/copper sulfide nanoparticles for the selective/sensitive detection of chromium, photochemical and biological application. Spectrochim. Acta A. 249, 119324 (2021). doi:https://doi.org/10.1016/j.saa.2020.119324

    Article  CAS  Google Scholar 

  39. M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7, 1–12 (2012). https://doi.org/10.1186/1556-276X-7-1

    Article  Google Scholar 

  40. H.M. Alghamdi, A. Rajeh, Synthesis of CoFe2O4/MWCNTs nanohybrid and its effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J. Inorg. Organomet. Polym. Mater. 32, 1935–1949 (2022). https://doi.org/10.1007/s10904-022-02322-z

    Article  CAS  Google Scholar 

  41. Y. Hua-Jun, C. Ya-Qi, Y. Fang, P. Yue-Hua, H. Xiong-Wu, Z. Ding, T. Dong-Sheng, Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires. Chin. Phys. B 20, 036103 (2011). doi:https://doi.org/10.1088/1674-1056/20/3/036103

    Article  CAS  Google Scholar 

  42. L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, A. Rajeh, Tuning optical, dielectric, and electrical properties of polyethylene oxide/carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices. J. Mol. Struct. 1272, 134244 (2023). https://doi.org/10.1016/j.molstruc.2022.134244

    Article  CAS  Google Scholar 

  43. V.R. Akshay, B. Arun, G. Mandal, M. Vasundhara, Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method. Phys. Chem. Chem. Phys. 21, 12991–13004 (2019). https://doi.org/10.1039/C9CP01351B

    Article  CAS  Google Scholar 

  44. N.Y. Elamin, A. Modwi, W. Abd El-Fattah, A. Rajeh, Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel poly (methyl methacrylate)/Polyaniline composite for electromagnetic and optical applications. Opt. Mater. 135, 113323 (2023). https://doi.org/10.1016/j.optmat.2022.113323

    Article  CAS  Google Scholar 

  45. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Le´vy, Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 75, 2945–2951 (1994). https://doi.org/10.1063/1.356190

    Article  CAS  Google Scholar 

  46. V.R. Akshay, B. Arun, S. Dash, G. Mandal, G.R. Mutta, A. Chanda, M. Vasundhara, Defect mediated mechanism in undoped, Cu and Zn-doped TiO2 nanocrystals for tailoring the band gap and magnetic properties. RSC Adv. 8, 41994–42008 (2018). https://doi.org/10.1039/C8RA07287F

    Article  CAS  Google Scholar 

  47. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255–3259 (2012). https://doi.org/10.1016/j.apsusc.2011.11.077

    Article  CAS  Google Scholar 

  48. E.M. Alharbi, A. Rajeh, Tailoring the structural, optical, dielectric, and electrical properties of PEO/PVA blend using graphene nanoplates for energy storage devices. J. Mater. Sci.: Mater. Electron. 33, 22196–22207 (2022). https://doi.org/10.1007/s10854-022-08999-9

    Article  CAS  Google Scholar 

  49. O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J. Mater. Sci. Mater. Electron. 27, 3591–3598 (2016). https://doi.org/10.1007/s10854-015-4196-4

    Article  CAS  Google Scholar 

  50. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A.R. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 26, 326–334 (2016). https://doi.org/10.1007/s10904-015-0321-3

    Article  CAS  Google Scholar 

  51. O.G. Abdullah, R.R. Hanna, H.T. Ahmed, A.H. Mohamad, S.A. Saleem, M.A.M. Saeed, Conductivity and dielectric properties of lithium-ion biopolymer blend electrolyte based film. Results Phys. 24, 104135 (2021). https://doi.org/10.1016/j.rinp.2021.104135

    Article  Google Scholar 

  52. R. Zamiri, B. Singh, M.S. Belsley, J.M.F. Ferreira, Structural and dielectric properties of Al-doped ZnO nanostructures. Ceram. Int. 40, 6031–6036 (2014). https://doi.org/10.1007/s10854-022-07979-3

    Article  CAS  Google Scholar 

  53. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103–9111 (2018). https://doi.org/10.1039/C8RA00037A

    Article  CAS  Google Scholar 

  54. S. Das, A. Ghosh, Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes. J. Appl. Phys. 117, 174103 (2015). https://doi.org/10.1063/1.4919721

    Article  CAS  Google Scholar 

  55. M. Arshad, A.S. Ahmed, A. Azama, A.H. Naqvi, Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy. J. Alloys Compd. 577, 469–474 (2013). https://doi.org/10.1016/j.jallcom.2013.06.035

    Article  CAS  Google Scholar 

  56. M.M. Abutalib, A.J. Rajeh, Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 107013 (2021). https://doi.org/10.1016/j.polymertesting.2020.107013

    Article  CAS  Google Scholar 

  57. H.M. Alghamdi, M.M. Abutalib, A. Rajeh, M.A. Mannaa, O. Nur, E.M. Abdelrazek, Effect of the Fe2O3/TiO2 nanoparticles on the structural, mechanical, electrical properties and antibacterial activity of the biodegradable chitosan/polyvinyl alcohol blend for food packaging. J. Polym. Environ. 30, 3865–3874 (2022). https://doi.org/10.1007/s10924-022-02478-2

    Article  CAS  Google Scholar 

  58. M. Mumtaz, N.A. Khan, S. Khan, Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2(Cu3 – yMy)O10–δ superconductor. J. Appl. Phys. 111, 013920 (2012). https://doi.org/10.1063/1.3673307

    Article  CAS  Google Scholar 

  59. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloys. Compd. 622, 687–694 (2015)

    Article  CAS  Google Scholar 

  60. S. Das, S. Das, S. Sutradhar, Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram. Int. 43, 6932–6941 (2017)

    Article  CAS  Google Scholar 

  61. N. Bhakta, P.K. Chakrabarti, XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles. Appl. Phys. A 73, 125–135 (2019). doi:https://doi.org/10.1007/s00339-018-2370-2

    Article  CAS  Google Scholar 

  62. S. Das, A. Bandyopadhyay, S. Das, D. Das, S. Sutradhar, Defect induced room temperature ferromagnetism and enhanced dielectric property in nanocrystalline, ZnO co-doped with Tb and Co. J. Alloys Compd. 731, 591–599 (2018). https://doi.org/10.1016/j.jallcom.2017.10.057

    Article  CAS  Google Scholar 

  63. M.F. Shukur, R. Ithnin, H.A. Illias, M.F.Z. Kadi, Proton conducting polymer electrolyte based on plasticized chitosan–PEO blend and application in electrochemical devices. Opt. Mater. 35, 1834–1841 (2013). https://doi.org/10.1016/j.optmat.2013.03.004

    Article  CAS  Google Scholar 

  64. N. Khamaru, A. Das, D. Das, A. Karmakar, S. Chatterjee, Effect of Cu-doping on the dielectric properties of MnV2O6 compound. J. Magn. Magn. Mater. 512, 167044 (2020)

    Article  CAS  Google Scholar 

  65. R. Samkaria, V. Sharma, Effect of rare earth yttrium substitution on the structural, dielectric and electrical properties of nanosized nickel aluminate. Mater. Sci. Eng. B 178, 1410–1415 (2013). doi:https://doi.org/10.1016/j.mseb.2013.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Research Department of Physics, St. John’s College, Tirunelveli, Tamil Nadu, India for providing LCR meter facility.

Funding

The authors declare that there is no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Biju Bennie or S. Mary Jelastin Kala.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, A.J., Joel, C., Bennie, R.B. et al. Enhancing the optical, temperature-dependent electrical and dielectric properties of WO3 through Fe doping for optoelectronic applications. J Mater Sci: Mater Electron 34, 761 (2023). https://doi.org/10.1007/s10854-023-10109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10109-2

Navigation