Skip to main content
Log in

Synthesis and Application of Fe-Doped WO3 Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H2O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesis of WO3 and Fe-doped WO3 nanoparticles is done by use of Microwave irradiation technique. X-ray powder diffraction confirmed the formation of a monoclinic crystalline structure. The as-prepared samples are characterised by transmission electron microscope, Braunuer, Emmett and Teller, Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy and ultraviolet diffuse reflectance spectroscopy. Confirmation of the morphology of the nanostructures showed ovoid-like form. The photocatalytic activity of WO3 and nominal percentage of Fe-doped WO3 (3, 5 and 10 wt%) are evaluated for the degradation of methylparaben (MeP) in aqueous solution after being irradiated with visible light. The results show that 5 wt% Fe–WO3 is the best dopant in the photodegradation of MeP at 50.8% with H2O2. A chemometric model analysis is applied to estimate both individual and interaction factors that included pH, contact time, hydrogen peroxide (H2O2) concentration and catalyst dosage. The optimal conditions at pH 3, 10 mg, 5 wt% Fe–WO3 and 120 min are achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Jiang J-Q, Zhou Z, Sharma VK (2013) Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water—a review from global views. Microchem J 110:292–300

    Article  CAS  Google Scholar 

  2. Carlos L, Mártire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46(15):4732–4740

    Article  CAS  PubMed  Google Scholar 

  3. Muñoz I, José Gómez M, Molina-Díaz A, Huijbregts MAJ, Fernández-Alba AR, García-Calvo E (2008) Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere 74(1):37–44

    Article  PubMed  CAS  Google Scholar 

  4. Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159(10):2929–2934

    Article  CAS  PubMed  Google Scholar 

  5. Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M (2013) Determination of parabens in waters by magnetically confined hydrophobic nanoparticle microextraction coupled to gas chromatography/mass spectrometry. Microchem J 110:643–648

    Article  CAS  Google Scholar 

  6. Sasi S, Rayaroth MP, Devadasan D, Aravind UK, Aravinda kumar CT (2015) Influence of inorganic ions and selected emerging contaminants on the degradation of methylparaben: a sonochemical approach. J Hazard Mater 300:202–209

    Article  CAS  PubMed  Google Scholar 

  7. Lam S-M, Sin J-C, Zuhairi Abdullah A, Rahman Mohamed A (2013) Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Mater Lett 93:423–426

    Article  CAS  Google Scholar 

  8. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 1190(1–2):253–262

    Article  CAS  PubMed  Google Scholar 

  9. Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monit 13(4):871–878

    Article  CAS  PubMed  Google Scholar 

  10. Andersen HR, Lundsbye M, Wedel HV, Eriksson E, Ledin A (2007) Estrogenic personal care products in a greywater reuse system. Water Sci Technol 56(12):45–49

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto H, Watanabe M, Hirata Y, Nakamura Y, Nakamura Y, Kitani C, Sekizawa J, Uchida M, Nakamura H, Kagami Y, Koshio M, Hirai N, Tatarazako N (2007) Preliminary ecological risk assessment of butylparaben and benzylparaben-1. Removal efficiency in wastewater treatment, acute/chronic toxicity for aquatic organisms, and effects on medaka gene expression. Environ Sci 14(Suppl):73–87

    CAS  PubMed  Google Scholar 

  12. Blanco E, Casais MdC, Mejuto MdC, Cela R (2009) Combination of off-line solid-phase extraction and on-column sample stacking for sensitive determination of parabens and p-hydroxybenzoic acid in waters by non-aqueous capillary electrophoresis. Anal Chim Acta 647(1):104–111

    Article  CAS  PubMed  Google Scholar 

  13. Haman C, Dauchy X, Rosin C, Munoz J-F (2015) Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res 68:1–11

    Article  CAS  PubMed  Google Scholar 

  14. Lee H-B, Peart TE, Svoboda ML (2005) Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1094(1–2):122–129

    Article  CAS  PubMed  Google Scholar 

  15. Driouich R, Takayanagi T, Oshima M, Motomizu S (2000) Separation and determination of haloperidol, parabens and some of their degradation products by micellar electrokinetic chromatography. J Chromatogr A 903(1–2):271–278

    Article  CAS  PubMed  Google Scholar 

  16. Huang H-Y, Lai Y-C, Chiu C-W, Yeh J-M (2003) Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products. J Chromatogr A 993(1–2):153–164

    Article  CAS  PubMed  Google Scholar 

  17. Dolzan MD, Spudeit DA, Azevedo MS, Costa ACO, de Oliveira MAL, Micke GA (2013) A fast method for simultaneous analysis of methyl, ethyl, propyl and butylparaben in cosmetics and pharmaceutical formulations using capillary zone electrophoresis with UV detection. Anal Methods 5(21):6023–6029

    Article  CAS  Google Scholar 

  18. Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 1217(1):1–6

    Article  PubMed  CAS  Google Scholar 

  19. Noorashikin MS, Mohamad S, Abas MR (2014) Extraction and determination of parabens in water samples using an aqueous two-phase system of ionic liquid and salts with beta-cyclodextrin as the modifier coupled with high performance liquid chromatography. Anal Methods 6(2):419–425

    Article  CAS  Google Scholar 

  20. Zgola-Grzeskowiak A, Werner J, Jeszka-Skowron M, Czarczynska-Goslinska B (2016) Determination of parabens in cosmetic products using high performance liquid chromatography with fluorescence detection. Anal Methods 8(19):3903–3909

    Article  CAS  Google Scholar 

  21. Gonzalez-Hernandez P, Pino V, Ayala JH, Afonso AM (2015) A simplified vortex-assisted emulsification microextraction method for determining personal care products in environmental water samples by ultra-high-performance liquid chromatography. Anal Methods 7(5):1825–1833

    Article  CAS  Google Scholar 

  22. Cao S, Liu Z, Zhang L, Xi C, Li X, Wang G, Yuan R, Mu Z (2013) Development of an HPLC-MS/MS method for the simultaneous analysis of six kinds of parabens in food. Anal Methods 5(4):1016–1023

    Article  CAS  Google Scholar 

  23. Lu L, Xiong W, Li X, Lv S, Tang X, Chen M, Zou Z, Lin Z, Qiu B, Chen G (2014) Determination of the migration of eight parabens from antibacterial plastic packaging by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Methods 6(7):2096–2101

    Article  CAS  Google Scholar 

  24. Shanmugam G, Ramaswamy BR, Radhakrishnan V, Tao H (2010) GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue. Microchem J 96(2):391–396

    Article  CAS  Google Scholar 

  25. Fan X, Kubwabo C, Rasmussen P, Jones-Otazo H (2010) Simultaneous quantitation of parabens, triclosan, and methyl triclosan in indoor house dust using solid phase extraction and gas chromatography-mass spectrometry. J Environ Monit 12(10):1891–1897

    Article  CAS  PubMed  Google Scholar 

  26. Che H, Liu C, Hu W, Hu H, Li J, Dou J, Shi W, Li C, Dong H (2018) NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions. Catal Sci Tech 8(2):622–631

    Article  CAS  Google Scholar 

  27. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci 1(2):90–112

    CAS  Google Scholar 

  28. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630

    Article  CAS  Google Scholar 

  29. Wen Z, Wu W, Liu Z, Zhang H, Li J, Chen J (2013) Ultrahigh-efficiency photocatalysts based on mesoporous Pt-WO3 nanohybrids. Phys Chem Chem Phys 15(18):6773–6778

    Article  CAS  PubMed  Google Scholar 

  30. Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716

    Article  CAS  Google Scholar 

  31. Adhikari S, Sarkar D (2014) Hydrothermal synthesis and electrochromism of WO3 nanocuboids. RSC Adv 4(39):20145–20153

    Article  CAS  Google Scholar 

  32. Qian J, Zhao Z, Shen Z, Zhang G, Peng Z, Fu X (2016) Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption. RSC Adv 6(10):8061–8069

    Article  CAS  Google Scholar 

  33. Epifani M, Arbiol J, Díaz R, Andreu T, Siciliano P, Morante JR (2010) Morphological and structural characterization of WO3 and Cr–WO3 thin films synthesized by sol–gel process. Thin Solid Films 518(16):4512–4514

    Article  CAS  Google Scholar 

  34. Martínez-de la Cruz A, Martínez DS, Cuéllar EL (2010) Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation. Solid State Sci 12(1):88–94

    Article  CAS  Google Scholar 

  35. Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Adv Powder Technol 23(2):211–214

    Article  CAS  Google Scholar 

  36. Chiang TH, Hsu C-C, Chen T-M, Yu B-S (2015) Synthesis and structural characterization of tungsten oxide particles by the glycothermal method. J Alloys Compd 648:297–306

    Article  CAS  Google Scholar 

  37. Adhikari SP, Dean H, Hood ZD, Peng R, More KL, Ivanov I, Wu Z, Lachgar A (2015) Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv 5(111):91094–91102

    Article  CAS  Google Scholar 

  38. Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y (2014) Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J 237:29–37

    Article  CAS  Google Scholar 

  39. Ahmed F, Kumar S, Arshi N, Anwar MS, Heun Koo B (2012) Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm 14(11):4016–4026

    Article  CAS  Google Scholar 

  40. Ahmed Y, Yaakob Z, Akhtar P (2016) Correction: degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1233–1233

    Article  CAS  Google Scholar 

  41. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577

    Article  CAS  Google Scholar 

  42. Yehia FZ, Eshaq G, Rabie AM, Mady AH, ElMetwally AE (2015) Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation. Egypt J Pet 24(1):13–18

    Article  Google Scholar 

  43. Ayodele OB, Lim JK, Hameed BH (2012) Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem Eng J 197:181–192

    Article  CAS  Google Scholar 

  44. Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16(3):417–424

    Article  CAS  PubMed  Google Scholar 

  45. Zeng Z, Zou H, Li X, Arowo M, Sun B, Chen J, Chu G, Shao L (2013) Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chem Eng J 229:404–411

    Article  CAS  Google Scholar 

  46. Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217–233

    Article  CAS  Google Scholar 

  47. Yue C, Zhu X, Rigutto M, Hensen E (2015) Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Appl Catal B 163:370–381

    Article  CAS  Google Scholar 

  48. Sayed Abhudhahir MH, Kandasamy J (2015) Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method. Mater Sci Semicond Process 40:695–700

    Article  CAS  Google Scholar 

  49. Santhi K, Rani C, Dhilip Kumar R, Karuppuchamy S (2015) Synthesis of nanoporous Zn-WO3 by microwave irradiation method for photocatalytic applications. J Mater Sci Mater Electron 26(12):10068–10074

    Article  CAS  Google Scholar 

  50. Beji N, Souli M, Ajili M, Azzaza S, Alleg S, Turki NK (2015) Effect of iron doping on structural, optical and electrical properties of sprayed In2O3 thin films. Superlattices Microstruct 81:114–128

    Article  CAS  Google Scholar 

  51. Silambarasan M, Saravanan S, Soga T (2015) Effect of Fe-doping on the structural, morphological and optical properties of ZnO nanoparticles synthesized by solution combustion process. Phys E 71:109–116

    Article  CAS  Google Scholar 

  52. Husain S, Alkhtaby LA, Giorgetti E, Zoppi A, Muniz Miranda M (2016) Investigation of the role of iron doping on the structural, optical and photoluminescence properties of sol–gel derived TiO2 nanoparticles. J Lumin 172:258–263

    Article  CAS  Google Scholar 

  53. Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T, Phanichphant S (2012) Doped-metal oxide nanoparticles for use as photocatalysts. Prog Cryst Growth Charact Mater 58(2–3):145–163

    Article  CAS  Google Scholar 

  54. Steter JR, Rocha RS, Dionísio D, Lanza MRV, Motheo AJ (2014) Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode. Electrochim Acta 117:127–133

    Article  CAS  Google Scholar 

  55. Dobrin D, Magureanu M, Bradu C, Mandache NB, Ionita P, Parvulescu VI (2014) Degradation of methylparaben in water by corona plasma coupled with ozonation. Environ Sci Pollut Res 21(21):12190–12197

    Article  CAS  Google Scholar 

  56. Sánchez-Martín J, Beltrán-Heredia J, Domínguez JR (2013) Advanced photochemical degradation of emerging pollutants: methylparaben. Water Air Soil Pollut 224(5):1483

    Article  CAS  Google Scholar 

  57. Doná G, Dagostin JLA, Takashina TA, de Castilhos F, Igarashi-Mafra L (2018) A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and vis radiations. Environ Technol 39(10):1238–1249

    Article  PubMed  CAS  Google Scholar 

  58. Xiao X, Hu R, Tu S, Zheng C, Zhong H, Zuo X, Nan J (2015) One-pot synthesis of micro/nano structured β-Bi2O3 with tunable morphology for highly efficient photocatalytic degradation of methylparaben under visible-light irradiation. RSC Adv 5(48):38373–38381

    Article  CAS  Google Scholar 

  59. Kumar A, Shalini, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe3O/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131

    Article  CAS  Google Scholar 

  60. Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z, Zhu L (2015) Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B 166–167:112–120

    Article  CAS  Google Scholar 

  61. Zhang Z, haq M, Wen Z, Ye Z, Zhu L (2018) Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl Surf Sci 434:891–897

    Article  CAS  Google Scholar 

  62. Hernandez-Uresti DB, Sánchez-Martínez D, Martínez-de la Cruz A, Sepúlveda-Guzmán S, Torres-Martínez LM (2014) Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceram Int 40(3):4767–4775

    Article  CAS  Google Scholar 

  63. Baserga A, Russo V, Di Fonzo F, Bailini A, Cattaneo D, Casari CS, Li Bassi A, Bottani CE (2007) Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization. Thin Solid Films 515(16):6465–6469

    Article  CAS  Google Scholar 

  64. Yang C, Zhu Q, Lei T, Li H, Xie C (2014) The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J Mater Chem C 2(44):9467–9477

    Article  CAS  Google Scholar 

  65. Yin L, Chen D, Feng M, Ge L, Yang D, Song Z, Fan B, Zhang R, Shao G (2015) Hierarchical Fe2O3@WO3 nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H2S-sensing performance. RSC Adv 5(1):328–337

    Article  CAS  Google Scholar 

  66. Lin Y, Ferronato C, Deng N, Wu F, Chovelon J-M (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B 88(1–2):32–41

    Article  CAS  Google Scholar 

  67. Yuan W, Zhang C, Wei H, Wang Q, Li K (2017) In situ synthesis and immobilization of a Cu(II)–pyridyl complex on silica microspheres as a novel Fenton-like catalyst for RhB degradation at near-neutral pH. RSC Adv 7(37):22825–22835

    Article  CAS  Google Scholar 

  68. Kumar A, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131

    Article  CAS  Google Scholar 

  69. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1222–1232

    Article  CAS  Google Scholar 

  70. Anik M, Cansizoglu T (2006) Dissolution kinetics of WO3 in acidic solutions. J Appl Electrochem 36(5):603–608

    Article  CAS  Google Scholar 

  71. Velegraki T, Hapeshi E, Fatta-Kassinos D, Poulios I (2015) Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Appl Catal B 178:2–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Water Research Commission (Grant No. K5/2563) and the Department of Applied Chemistry at the University of Johannesburg for partial funding. The authors also thank the Spectra Analytical Facility, the University of Johannesburg for the availability of XRD, SEM, TEM analysis and Department of Physics for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Catherine Ngila.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngigi, E.M., Nomngongo, P.N. & Ngila, J.C. Synthesis and Application of Fe-Doped WO3 Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H2O2. Catal Lett 149, 49–60 (2019). https://doi.org/10.1007/s10562-018-2594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2594-y

Keywords

Navigation