Skip to main content
Log in

Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review

  • Review paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Due to its unique electronic structure and special size effect, two-dimensional (2D) nanomaterials have shown great potential far beyond bulk materials in the field of photocatalysis. How to deeply explore the photocatalytic mechanism of 2D nanomaterials and design more efficient 2D semiconductor photocatalysts are research hotspots. This review provides a comprehensive introduction to typical 2D nanomaterials and discusses their current application status in the field of photocatalysis. The effects of material properties such as band structure, morphology, crystal face structure, crystal structure and surface defects on the photocatalytic process are discussed. The main modification methods are highlighted, including doping, noble metal deposition, heterojunction, thickness adjustment, defect engineering, and dye sensitization in 2D material systems. Finally, the future development of 2D nanomaterials is prospected. It is hoped that this paper can provide systematic and useful information for researchers engaged in the field of photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [22]. Copyright 2018, Royal Society of Chemistry. Reproduced with permission from Ref. [23]. Copyright 2020, Elsevier. Reproduced with permission from Ref. [24]. Copyright 2017, ACS Publications. Reproduced with permission from Ref. [25]. Copyright 2020, Elsevier

Fig. 4
Fig. 5

Reproduced with permission from Ref. [48].Copyright 2021, Elsevier

Fig. 6

Reproduced with permission from Ref. [69]. Copyright 2020, Royal Society of Chemistry. d The schematic diagram of the synthesis processes of TiO2/NiO. e The schematic diagram of the photocatalytic mechanism of TiO2/NiO. Reproduced with permission from Ref. [58] Copyright 2020, Elsevier. Degradation curves of MB by MnO2/Fe3O4 at different pH values f in the dark and g with UV−Vis light, h the speculated reaction principle of MnO2/Fe3O4 and MB under different pH values. Reproduced with permission from Ref. [71]. Copyright 2014, ACS Publications

Fig. 7

Reproduced with permission from Ref. [84]. Copyright 2023, John Wiley and Sons. c Evolution of the band structure of 2H‑MoS2 calculated for samples of decreasing thickness. Reproduced with permission from Ref. [96]. Copyright 2017, Springer Nature. d Schematic diagram of direct band gap and indirect band gap. Reproduced with permission from Ref. [97]. Copyright 2020, ACS Publications. e Scanning electron microscope image of U-CN/MoS2-3. f Histograms of hydrogen production for different ratios of U-CN/MoS2. g Heterojunction mechanism of U-CN/MoS2 photocatalyst. Reproduced with permission from Ref. [106]. Copyright 2019, Elsevier

Fig. 8

Reproduced with permission from Ref. [114]. Copyright 2016, Royal Society of Chemistry

Fig. 9

Reproduced with permission from Ref. [135]. Copyright 2019, Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [147]. Copyright 2019, John Wiley and Sons

Fig. 11

Reproduced with permission from Ref. [163]. Copyright 2022, ACS Publications. b Structural diagrams of the four kinds of MXenes. Reproduced with permission from Ref. [165]. Copyright 2022, Elsevier. c The charge-transfer process in the Ti3C2/TiO2 system. Reproduced with permission from Ref. [166]. Copyright 2020, Elsevier. d Schematic diagram of the reaction mechanism of 2D-Bi2MoO6@2D-Mxene. (NSs: nanosheets) Reproduced with permission from Ref. [169]. Copyright 2020 Elsevier

Fig. 12
Fig. 13

Reproduced with permission from Ref. [177]. Copyright 2023, Elsevier

Fig. 14

Reproduced with permission from Ref. [185]. Copyright 2023, Elsevier. f Schematic illustration of the crystal orientation of the nanosheet. g The high resolution transmission electron microscopy (HRTEM) images of the ultrathin BiOCl nanosheet. h The atomic force microscopic image of the ultrathin BiOCl nanosheet. i The RhB degradation curve. j The positron annihilation spectroscopy. k The positron lifetime spectrum. Reproduced with permission from Ref. [188]. Copyright 2013, ACS Publications

Fig. 15

Reproduced with permission from Ref. [193]. Copyright 2019, Elsevier

Fig. 16
Fig. 17

Reproduced with permission from Ref. [209]. Copyright 2015, Elsevier. c The Tauc plots of different samples. d Photo-induced temperature rise rates of different samples. e The electron paramagnetic resonance (EPR) spectra of 2,2,6,6-tetramethylpiperidinyl (TEMP-1O2) for Co1Zn19-ZIF. f The EPR spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO-O2-) for Co1Zn19-ZIF. Reproduced with permission from Ref. [214]. Copyright 2023, Elsevier

Fig. 18

Reproduced with permission from Ref. [219]. Copyright 2014, ACS Publications. b Schematic illustration of the hot-electron-injection effect: excitation of the electrons from thermal equilibrium to a high-energy state upon absorbing photons and injection of the electrons to the CB of the semiconductor (I). Redistribution of electron energy and formation of a Fermi–Dirac distribution at a high-temperature Fermi level after the injection of the electrons (II). Restoration of the standard electron distribution with electrons and holes flowing to different regions in the semiconductor (III). Reproduced with permission from Ref. [220]. Copyright 2015, John Wiley and Sons. c The absorption spectra of different BiVO4 samples. d The absorption spectrum of the Ag NPs and the reflectance spectrum of the io-BiVO4 sample. e The IPCE spectra of different BiVO4 samples. f The schematic diagram of Schottky junction of Ag/BiVO4. Reproduced with permission from Ref. [221]. Copyright 2016, AIP Publishing. (FTO: F-doped tin oxide) g The HRTEM images of different Ag/TiO2 samples. h The schematic diagram of the formation mechanism of Ag NPs different sizes. Reproduced with permission from Ref. [226]. Copyright 2020, Royal Society of Chemistry

Fig. 19

Reproduced with permission from Ref. [231]. Copyright 2016, Elsevier. d SEM images of pure TiO2 nanofibers and TiO2/MoS2 composite nanofibers. e The band structures of TiO2/MoS2 heterostructure. Reproduced with permission from Ref. [232]. Copyright 2020, Elsevier. f TEM images of WO3 nanosheets, g-C3N4 nanosheets and WO3/g-C3N4 samples. g The band structures of pure g-C3N4 and WO3 before bonding (left), the internal electric field and band-edge bending of the WO3/g-C3N4 interface after bonding (middle), and the schematic diagram of the S-heterojunction charge-transfer process between WO3 and g-C3N4 under illumination (right). h the Schematic illustration of type II heterojunction and S-scheme heterojunction. Reproduced with permission from Ref. [233]. Copyright 2019, Elsevier. i Schematic illustration of NMS/SCN S-scheme heterojunction. (TEOA: Triethanolamine) Reproduced with permission from Ref. [234]. Copyright 2021, Elsevier

Fig. 20

Reproduced with permission from Ref. [236]. Copyright 2022, Elsevier. d AFM images and height cutaway views of different CdS samples. e Kubelka–Munk function vs. photon energy curves of different CdS samples. f Rates of photocatalytic produced hydrogen of different CdS samples. Reproduced with permission from Ref. [237]. Copyright 2018, Elsevier

Fig. 21

Reproduced with permission from Ref. [239]. Copyright 2019, Elsevier. d The typical TEM images of CN and CNQ680 and the schematic diagram of the morphology change from CN to CNQ. e The converted Kubelka–Munk vs. light energy plots of CN and CNQs. f Schematic diagram of band structure change from CN to CNQ680. g The FTIR spectra of CN and CNQs. h the (N2c)/(N3c) ratio of CN and CNQs. i The C/N ratio of CN and CNQs. Reproduced with permission from Ref. [240]. Copyright 2017, Elsevier. j The total and atomic projected DOS analyses of different h-BN samples. Reproduced with permission from Ref. [241]. Copyright 2021, ACS Publications

Fig. 22

Reproduced with permission from Ref. [242]. Copyright 2018, Elsevier. b energy bandgaps of different samples. Reproduced with permission from Ref. [243]. Copyright 2019, Academic Press Inc. c M − S plots of MIL-53 (Fe). d LSV curve of MIL-53 (Fe) for HER. e Illustration of band structure of MIL-53 (Fe). f M − S plots of EY-sensitized MIL-53 (Fe). g Photocatalytic hydrogen evolution activity of different samples. Reproduced with permission from Ref. [244]. Copyright 2022, Elsevier. h The photoexcited charge-transfer processes that may occur in the Bi2MoO6@RhB samples: 1. direct bandgap transition; 2. intrinsic charge recombination; 3. electron trapping/detrapping; 4. intramolecular photoexcitation; 5. interfacial electron injection; 6. interfacial electron recombination; 7. radiationless decay. i sacrificial agent experiments over Bi2MoO6@RhB under LED light irradiation. (TBA: tert-Butanol) Reproduced with permission from Ref. [245]. Copyright 2023, Elsevier

Similar content being viewed by others

Data availability

The raw/proceeded data can be provided from the corresponding authors on the reasonable request.

References

  1. Zhu D, Zhou Q. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag. 2019;12:100255.

    Google Scholar 

  2. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253.

    Article  CAS  PubMed  Google Scholar 

  3. Loeb SK, Alvarez PJJ, Brame JA, Cates EL, Choi W, Crittenden J, Dionysiou DD, Li QL, Li PG, Quan X, Sedlak DL, Waite TD, Westerhoff P, Kim JH. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ Sci Technol. 2019;53(6):2937.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Lee CM, Palaniandy P, Dahlan I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environ Earth Sci. 2017;76(17):1.

    Article  ADS  Google Scholar 

  5. Chairungsri W, Subkomkaew A, Kijjanapanich P, Chimupala Y. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. Chemosphere. 2022;286:131762.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Guo SH, Li XH, Li J, Wei BQ. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat Commun. 2021;12(1):1343.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev. 2019;48(7):2109.

    Article  CAS  PubMed  Google Scholar 

  8. Puga AV. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord Chem Rev. 2016;315:1.

    Article  CAS  Google Scholar 

  9. Li JL, Zhang M, Guan ZJ, Li QY, He CQ, Yang JJ. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B Environ. 2017;206:300.

    Article  CAS  Google Scholar 

  10. Zhang XD, Kim D, Yan J, Lee LYS. Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl Mater Interfaces. 2021;13(8):9762.

    Article  CAS  PubMed  Google Scholar 

  11. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. JACS. 2017;139(31):10929.

    Article  CAS  Google Scholar 

  12. Feng YL, Zhang ZS, Zhao K, Lin SL, Li H, Gao X. Photocatalytic nitrogen fixation: oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J Colloid Interface Sci. 2021;583:499.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Abdelsalam EM, Mohamed YMA, Abdelkhalik S, El Nazer HA, Attia YA. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag- and Pt-doped TiO2 nanoparticles under visible light irradiation. Environ Sci Pollut Res. 2020;27:35828.

    Article  CAS  Google Scholar 

  14. Attia YA, Mohamed YMA, Awad MM, Alexeree S. Ag doped ZnO nanorods catalyzed photo -triggered synthesis of some novel (1H-tetrazol-5-yl)-coumarin hybrids. J Organomet Chem. 2020;919:121320.

    Article  CAS  Google Scholar 

  15. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. B Environ Contam Toxicol. 1976;16:697.

    Article  CAS  Google Scholar 

  17. Schrauzer GN, Guth TD. Photolysis of water and photoreduction of nitrogen on titanium-dioxide. ChemInform. 2002;99(22):7189.

    Google Scholar 

  18. Yang T, Peng J, Yun Z, Xuan H, Fu X. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B Environ. 2018;221:223.

    Article  CAS  Google Scholar 

  19. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891.

    Article  CAS  PubMed  Google Scholar 

  20. Katal R, Masudy PS, Tanhaei M, Farahani M, Hu JY. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem Eng J. 2020;384:123384.

    Article  CAS  Google Scholar 

  21. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69.

    Article  CAS  Google Scholar 

  22. Ren HT, Ge L, Guo Q, Li L, Hu GK, Li JG. The enhancement of photocatalytic performance of SrTiO3 nanoparticles via combining with carbon quantum dots. RSC Adv. 2018;8(36):20157.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Fu SL, Chen XH, Liu P. Preparation of CNTs/Cu composites with good electrical conductivity and excellent mechanical properties. Mater Sci Eng A. 2020;771:138656.

    Article  CAS  Google Scholar 

  24. Lin JX, Huang YJ, Wang S, Chen GH. Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent. Ind Eng Chem Res. 2017;56(33):9341.

    Article  CAS  Google Scholar 

  25. Hou DD, Li K, Ma RJ, Liu QF. Influence of order degree of coaly graphite on its structure change during preparation of graphene oxide. J Materiomics. 2020;6(3):628.

    Article  Google Scholar 

  26. Li N, Kong ZZ, Chen XZ, Yang YF. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis. J Inorg Mater. 2020;35(7):735.

    ADS  Google Scholar 

  27. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501.

    Article  PubMed  Google Scholar 

  28. Feng CY, Wu ZP, Huang KW, Ye JH, Zhang HB. Surface modification of 2D photocatalysts for solar energy conversion. Adv Mater. 2022;34(23):2200180.

    Article  CAS  Google Scholar 

  29. Wang H, Zhang XD, Xie Y. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater Sci Eng R Rep. 2018;130:1.

    Article  Google Scholar 

  30. Di J, Yan C, Handoko AD, Seh ZW, Li HM, Liu Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater Today. 2018;21(7):749.

    Article  CAS  Google Scholar 

  31. Luo B, Liu G, Wang LZ. Recent advances in 2D materials for photocatalysis. Nanoscale. 2016;8(13):6904.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Li Y, Gao C, Long R, Xiong Y. Photocatalyst design based on two-dimensional materials. Mater Today Chem. 2019;11:197.

    Article  CAS  Google Scholar 

  33. Qian WQ, Xu SW, Zhang XM, Li CB, Yang WY, Bowen CR, Yang Y. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano Micro Lett. 2021;13:1.

    Article  CAS  ADS  Google Scholar 

  34. Bakardjieva S, Fajgar R, Jakubec I, Koci E, Zhigunov A, Chatzisymeon E, Davididou K. Photocatalytic degradation of bisphenol A induced by dense nanocavities inside aligned 2D-TiO2 nanostructures. Cata Today. 2019;328:189.

    Article  CAS  Google Scholar 

  35. Segovia M, Alegria M, Aliaga J, Celedon S, Ballesteros L, Sotomayor TC, Gonzalez G, Benavente E. Heterostructured 2D ZnO hybrid nanocomposites sensitized with cubic Cu2O nanoparticles for sunlight photocatalysis. J Mater Sci. 2019;54:13523.

    Article  CAS  ADS  Google Scholar 

  36. Ren JK, Innocenzi P. 2D boron nitride heterostructures: recent advances and future challenges. Small Struct. 2021;2(11):2100068.

    Article  CAS  Google Scholar 

  37. Feng CY, Tang L, Deng YC, Zeng GM, Wang JJ, Liu YN, Chen ZM, Yu JF, Wang JJ. Enhancing optical absorption and charge transfer: synthesis of S-doped h-BN with tunable band structures for metal-free visible-light-driven photocatalysis. Appl Catal B Environ. 2019;256:117827.

    Article  CAS  Google Scholar 

  38. Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv Mater. 2016;28(29):6197.

    Article  CAS  PubMed  Google Scholar 

  39. Cao SW, Low JX, Yu JG, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater. 2015;27(13):2150.

    Article  CAS  PubMed  Google Scholar 

  40. Tang RD, Gong DX, Zhou YY, Deng YC, Feng CY, Xiong S, Huang Y, Peng GW, Li L. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl Catal B Environ. 2022;303:120929.

    Article  CAS  Google Scholar 

  41. Wen M, Wang JH, Tong RF, Liu DN, Huang H, Yu Y, Zhou ZK, Chu PK, Yu XF. A low-cost metal-free photocatalyst based on black phosphorus. Adv Sci. 2019;6(1):1801321.

    Article  Google Scholar 

  42. Zhang GH, Zhang XQ, Meng Y, Pan GX, Ni ZM, Xia SJ. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem Eng J. 2020;392:123684.

    Article  CAS  Google Scholar 

  43. Sun DR, Li ZH. Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chinese J Chem. 2017;35(2):135.

    Article  CAS  Google Scholar 

  44. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun XL, Ye SY, Knights S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ Sci. 2011;4(3):760.

    Article  CAS  Google Scholar 

  46. Li M, Yin B, Gao C, Guo J, Zhao C, Jia C, Guo X. Graphene: preparation, tailoring, and modification. Exploration. 2023;3(1):20210233.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhu Y, Murali S, Cai W, Li X, Ji WS, Jeffrey RP, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Yang Y, Huang X, Shan Q, Wu W. Novel preparation of high-yield graphene and graphene/ZnO composite. J Alloys Compd. 2021;875:160024.

    Article  CAS  Google Scholar 

  49. Huang Y, Shen YY, Qin XL, Wang K. Enhancing visible-light photocatalytic activity by strongly binding flake BiFeO3 nanoparticles on graphene sheets. Micro Nano Lett. 2020;15(11):755.

    Article  CAS  Google Scholar 

  50. Zhang H, Gu QQ, Zhou YW, Liu SQ, Liu WX, Luo L, Meng ZD. Direct Z-scheme photocatalytic removal of ammonia via the narrow band gap MoS2/N-doped graphene hybrid catalyst upon near-infrared irradiation. Appl Surf Sci. 2020;504:144065.

    Article  CAS  Google Scholar 

  51. Yang X, Cui J, Liu X, Zhang Q, Wang D, Ye J, Liu L. Boosting photocatalytic overall water splitting over single-layer graphene coated metal cocatalyst. Appl Catal B Environ. 2023;325:122369.

    Article  CAS  Google Scholar 

  52. Qiu D, He CL, Lu YX, Li QD, Chen Y, Cui XL. Assembling gamma-graphyne surrounding TiO2 nanotube arrays: an efficient p-n heterojunction for boosting photoelectrochemical water splitting. Dalton Trans. 2021;50(42):15422.

    Article  CAS  PubMed  Google Scholar 

  53. Wu LL, Li QD, Yang CF, Chen Y, Dai ZQ, Yao BY, Zhang XY, Cui XL. Ternary TiO2/MoSe2/gamma-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. J Mater Sci Mater Electron. 2020;31(11):8796.

    Article  CAS  Google Scholar 

  54. Carvalho A, Costa MCF, Marangoni VS, Ng PR, Nguyen TLH, Neto AHC. The degree of oxidation of graphene oxide. Nanomaterials. 2021;11(3):560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo ZT, Vora PM, Mele EJ, Johnson ATC, Kikkawa JM. Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett. 2009;94(11):111909.

    Article  ADS  Google Scholar 

  56. Yeh TF, Syu JM, Cheng C, Chang TH, Teng H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater. 2010;20(14):2255.

    Article  CAS  Google Scholar 

  57. Meng AY, Zhang LY, Cheng B, Yu JG. Dual cocatalysts in TiO2 photocatalysis. Adv Mater. 2019;31(30):1807660.

    Article  Google Scholar 

  58. Chen J, Wang MG, Han J, Guo R. TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis. J Colloid Interface Sci. 2020;562:313.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Fragua DM, Abargues R, Rodriguez CPJ, Sanchez RJF, Agouram S, Martinez PJP. Au-ZnO nanocomposite films for plasmonic photocatalysis. Adv Mater Interfaces. 2015;2(11):1500156.

    Article  Google Scholar 

  60. Das A, Malakar P, Nair RG. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater Lett. 2018;219:76.

    Article  CAS  Google Scholar 

  61. Kandasamy M, Seetharaman A, Sivasubramanian D, Nithya A, Jothiyenkatachalam K, Maheswari N, Gopalan M, Dillibabu S, Eftekhari A. Ni-Doped SnO2 nanoparticles for sensing and photocatalysis. ACS Appl Mater Interfaces. 2018;1(10):5823.

    CAS  Google Scholar 

  62. Zhan HQ, Deng C, Shi XL, Wu CQ, Li XH, Xie ZP, Wang CA, Chen ZG. Correlation between the photocatalysis and growth mechanism of SnO2 nanocrystals. J Phys D. 2020;53(15):154005.

    Article  CAS  ADS  Google Scholar 

  63. Adhikari S, Sarkar D, Madras G. Highly efficient WO3-ZnO mixed oxides for photocatalysis. RSC Adv. 2015;5(16):11895.

    Article  CAS  ADS  Google Scholar 

  64. Shen ZG, Zhao ZY, Qian JW, Peng ZJ, Fu XL. Synthesis of WO3-x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J Mater Res. 2016;31(8):1065.

    Article  CAS  ADS  Google Scholar 

  65. Wang C, Huang ZX. Controlled synthesis alpha-Fe2O3 nanostructures for efficient photocatalysis. Mater Lett. 2016;164:194.

    Article  CAS  Google Scholar 

  66. Wang F, Song LX, Teng Y, Xia J, Xu ZY, Wang WP. Synthesis, structure, magnetism and photocatalysis of alpha-Fe2O3 nanosnowflakes. RSC Adv. 2019;9(61):35372.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Li N, Zhang W, Wang DL, Li GX, Zhao Y. Synthesis and applications of TiO2-based nanostructures as photocatalytic materials. Chem Asian J. 2022;17(23):202200822.

    Article  Google Scholar 

  68. Sakai N, Ebina Y, Takada K, Sasaki T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. JACS. 2004;126(18):5851.

    Article  CAS  Google Scholar 

  69. Liu YF, Yu ZR, Guo SS, Yao LL, Sun RZ, Huang XY, Zhao WR. Photocatalytic nitrogen fixation on transition metal modified TiO2 nanosheets under simulated sunlight. New J Chem. 2020;44(45):19924.

    Article  CAS  Google Scholar 

  70. Wang J, Xia Y, Dong Y, Chen R, Xiang L, Komarneni S. Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Appl Catal B Environ. 2016;192:8.

    Article  CAS  Google Scholar 

  71. Zhang L, Lian J, Wu L, Duan Z, Jiang J, Zhao L. Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst. Langmuir. 2014;30(23):7006.

    Article  CAS  PubMed  Google Scholar 

  72. Xu WS, Kozawa DC, Zhou YQ, Wang YZ, Sheng YW, Jiang T, Strano MS, Warner JH. Controlling photoluminescence enhancement and energy transfer in WS2:hBN:WS2 vertical stacks by precise interlayer distances. Small. 2020;16(3):1905985.

    Article  CAS  Google Scholar 

  73. Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi M, Lai JW, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai XT, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu ZW, Iyengar SA, Autreto PAD, Oliveira EF, Gao GH, Birdwell AG, Neupane MR, Ivanov TG, Taha TJ, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv Mater. 2021;33(44):2101589.

    Article  CAS  Google Scholar 

  74. Moon S, Kim J, Park J, Im S, Kim J, Hwang I, Kim JK. Hexagonal boron nitride for next-generation photonics and electronics. Adv Mater. 2023;35(4):2204161.

    Article  CAS  Google Scholar 

  75. Angizi S, Alem SAA, Azar MH, Shayeganfar F, Manning MI, Hatamie A, Pakdel A, Simchi A. A comprehensive review on planar boron nitride nanomaterials: from 2D nanosheets towards 0D quantum dots. Prog Mater Sci. 2022;124:100884.

    Article  CAS  Google Scholar 

  76. Meng SG, Ye XJ, Ning XF, Xie ML, Fu XL, Chen SF. Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl Catal B Environ. 2016;182:356.

    Article  CAS  Google Scholar 

  77. Zhang J, Tan BY, Zhang X, Gao F, Hu YX, Wang LF, Duan XM, Yang ZH, Hu P. Atomically thin hexagonal boron nitride and its heterostructures. Adv Mater. 2021;33(6):2000769.

    Article  CAS  Google Scholar 

  78. Wang XY, Liu ZJ, Shi XQ, Jia YF, Zhu GQ, Peng JH, Wang QZ. Optical and photocatalytic characteristics of Se-doped h-boron nitride: experimental assessments and DFT calculations. J Alloys Compd. 2022;909:164791.

    Article  CAS  Google Scholar 

  79. Zhao G, Wang Z, He WD, Xing YP, Xu XJ. 2D new nonmetal photocatalyst of sulfur-doped h-BN nanosheeets with high photocatalytic activity. Adv Mater Interfaces. 2019;6(7):1900062.

    Article  CAS  Google Scholar 

  80. He Z, Kim C, Lin LH, Jeon TH, Lin S, Wang XC, Choi W. Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. Nano Energy. 2017;42:58.

    Article  CAS  Google Scholar 

  81. Bevilacqua A, Köhler MH, Azevedo S, Baierle RJ. Stability, and optical and electronic properties of ultrathin h-BNC. Phys Chem Chem Phys. 2017;19(7):5629.

    Article  CAS  PubMed  Google Scholar 

  82. Li Q, Hou XM, Fang Z, Yang T, Chen JH, Cui XZ, Liang TX, Shi JL. Construction of layered h-BN/TiO2 hetero-structure and probing of the synergetic photocatalytic effect. Sci China Mater. 2020;63(2):276.

    Article  CAS  Google Scholar 

  83. Wang T, Liu XQ, Men QY, Ma CC, Liu Y, Liu Z, Huo PW, Li CX, Yan YS. Green synthesis g-C3N4 quantum dots loading h-BN for efficient and stable photocatalytic performance. J Mol Liq. 2018;268:561.

    Article  CAS  Google Scholar 

  84. Yang RJ, Fan YY, Zhang YF, Mei L, Zhu RS, Qin JQ, Hu JG, Chen ZX, Ng YH, Voiry D, Li S, Lu QY, Wang Q, Yu JC, Zeng ZY. 2D transition metal dichalcogenides for photocatalysis. Angew Chem Int Ed. 2023;62(13):202218016.

    Article  Google Scholar 

  85. Wang QH, Kalantar ZK, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.

    Article  CAS  PubMed  ADS  Google Scholar 

  86. Altavilla C, Sarno M, Ciambelli P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W). Chem Mater. 2011;23(17):3879.

    Article  CAS  Google Scholar 

  87. Chhowalla M, Voiry D, Yang JE, Shin HS, Loh KP. Phase-engineered transition-metal dichalcogenides for energy and electronics. Mrs Bull. 2015;40(7):585.

    Article  CAS  ADS  Google Scholar 

  88. Wei ZM, Li B, Xia CX, Cui Y, He J, Xia JB, Li JB. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods. 2018;2(11):1800094.

    Article  Google Scholar 

  89. Rahmanian E, Malekfar R, Pumera M. Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem Eur J. 2018;24(1):18.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Z, Tang MT, Cao A, Chan K, Nørskov JK. Insights into the hydrogen evolution reaction on 2D transition-metal dichalcogenides. J Phys Chem C. 2022;126(11):5151.

    Article  CAS  Google Scholar 

  91. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Kang Y, Gong Y, Hu Z, Li Z, Qiu Z. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. Nanoscale. 2015;7(10):4482.

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Eftekhari A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl Mater Today. 2017;8:1.

    Article  Google Scholar 

  94. Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS and WSe nanosheets. Acc Chem Res. 2014;47(04):1067.

    Article  CAS  PubMed  Google Scholar 

  95. Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv Mater. 2015;27(2):363.

    Article  CAS  PubMed  Google Scholar 

  96. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2(8):17033.

    Article  CAS  ADS  Google Scholar 

  97. Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev. 2020;120(2):919.

    Article  CAS  PubMed  Google Scholar 

  98. Yang RJ, Mei L, Zhang QY, Fan YY, Shin HS, Voiry D, Zeng ZY. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat Protoc. 2022;17(2):358.

    Article  CAS  PubMed  Google Scholar 

  99. Rong JS, Ye YP, Cao J, Liu XY, Fan HG, Yang S, Wei MB, Yang LL, Yang JH, Chen YL. Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Appl Surf Sci. 2022;579:152216.

    Article  CAS  Google Scholar 

  100. Shi SP, Gao DQ, Xia BR, Liu PT, Xue DS. Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J Mater Chem A. 2015;3(48):24414.

    Article  CAS  Google Scholar 

  101. Jia W, Wang X, Lu ZJ, Wu YF, Sheng R, Lv J. Hydrazine hydrate-assisted adjustment of sulfur-rich MoS2 as hydrogen evolution electrocatalyst. J Alloys Compd. 2021;885:160990.

    Article  CAS  Google Scholar 

  102. Samadi M, Sarikhani N, Zirak M, Hua Z, Zhang HL, Moshfegh AZ. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 2018;3(02):90.

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Parzinger E, Miller B, Blaschke B, Garrido JA, Ager JW, Holleitner A, Wurstbauer U. Photocatalytic stability of single- and few-layer MoS2. ACS Nano. 2015;9(11):11302.

    Article  CAS  PubMed  Google Scholar 

  104. Shao MM, Shao YF, Ding SJ, Tong R, Zhong XW, Yao LM, Ip WF, Xu BM, Shi XQ, Sun YY, Wang XS, Pan H. Carbonized MoS2: super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustainable Chem Eng. 2019;7(4):4220.

    Article  CAS  Google Scholar 

  105. Shah SA, Khan I, Yuan AH. MoS2 as a co-catalyst for photocatalytic hydrogen production: a mini review. Molecules. 2022;27(10):3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li W, Wang L, Zhang Q, Chen Z, Sun M. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. J Alloys Compd. 2019;808:151681.

    Article  CAS  Google Scholar 

  107. Kou S, Guo X, Xu X, Yang J. TiO2 on MoSe2 nanosheets as an advanced photocatalyst for hydrogen evolution in visible light. Catal Commun. 2018;106:60.

    Article  CAS  Google Scholar 

  108. Zhang BQ, Chen JS, Niu HL, Mao CJ, Song JM. Synthesis of ultrathin WSe2 nanosheets and their high-performance catalysis for conversion of amines to imines. Nanoscale. 2018;10(43):20266.

    Article  CAS  PubMed  Google Scholar 

  109. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8(1):76.

    Article  CAS  PubMed  ADS  Google Scholar 

  110. Dong F, Li YH, Wang ZY, Ho WK. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl Surf Sci. 2015;358:393.

    Article  CAS  ADS  Google Scholar 

  111. Feng J, Chen TT, Liu SN, Zhou QH, Ren YM, Lv YZ, Fan ZJ. Improvement of g-C3N4 photocatalytic properties using the Hummers method. J Colloid Interface Sci. 2016;479:1.

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Xing YP, Wang XK, Hao SH, Zhang XL, Wang X, Ma WX, Zhao G, Xu XJ. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin Chem Lett. 2021;32(1):13.

    Article  CAS  Google Scholar 

  113. Liu YM, Wang JP, Yang P. Photochemical reactions of g-C3N4-based heterostructured composites in Rhodamine B degradation under visible light. RSC Adv. 2016;6(41):34334.

    Article  CAS  ADS  Google Scholar 

  114. Peng DL, Wang HH, Yu K, Chang Y, Ma XG, Dong SJ. Photochemical preparation of the ternary composite CdS/Au/g-C3N4 with enhanced visible light photocatalytic performance and its microstructure. RSC Adv. 2016;6(81):77760.

    Article  CAS  ADS  Google Scholar 

  115. Zhang W, Zhang Z, Kwon S, Zhang F, Stephen B, Kim KK, Jung R, Kwon S, Chung KB, Yang W. Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl Catal B Environ. 2017;206:271.

    Article  CAS  Google Scholar 

  116. Cao J, Pan C, Ding YB, Li WJ, Lv KL, Tang HQ. Constructing nitrogen vacancy introduced g-C3N4 p-n homojunction for enhanced photocatalytic activity. J Environ Chem Eng. 2019;7(2):102984.

    Article  CAS  Google Scholar 

  117. Wang SC, Wang X, Liu BY, Xiao X, Wang LZ, Huang W. Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups. J Colloid Interface Sci. 2022;610:495.

    Article  CAS  PubMed  ADS  Google Scholar 

  118. Bridgman PW. Two new modifications of phosphorus. JACS. 1914;36(7):1344.

    Article  CAS  Google Scholar 

  119. Lange S, Schmidt P, Nilges T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg Chem. 2007;46(10):4028.

    Article  CAS  PubMed  Google Scholar 

  120. Xing C, Zhang JH, Jing JY, Li JZ, Shi F. Preparations, properties and applications of low-dimensional black phosphorus. Chem Eng J. 2019;370:120.

    Article  CAS  Google Scholar 

  121. Lee HU, Lee SC, Won JG, Son BC, Choi SH, Kim YS, Park SY, Kim HS, Lee YC, Lee J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci Rep. 2015;5(1):8691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu MS, Cai XY, Fujitsuka M, Zhang JY, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew Chem Int Ed. 2017;56(8):2064.

    Article  CAS  Google Scholar 

  123. Zhou SH, Bao CH, Fan BS, Zhou H, Gao QX, Zhong HY, Lin TY, Liu H, Yu P, Tang PZ, Meng S, Duan WH, Zhou SY. Pseudospin-selective Floquet band engineering in black phosphorus. Nature. 2023;614(7946):75.

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Favron A, Gaufrès E, Fossard F, Phaneuf LHAL, Tang NYW, Lévesque PL, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater. 2015;14(8):826.

    Article  CAS  PubMed  ADS  Google Scholar 

  125. Zhu XJ, Zhang TM, Sun ZJ, Chen HL, Guan J, Chen X, Ji HX, Du PW, Yang SF. Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv Mater. 2017;29(17):1605776.

    Article  Google Scholar 

  126. Velický M, Toth PS. From two-dimensional materials to their heterostructures: an electrochemist’s perspective. Appl Mater Today. 2017;8:68.

    Article  Google Scholar 

  127. Fan FR, Wang RX, Zhang H, Wu WZ. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev. 2021;50(19):10983.

    Article  CAS  PubMed  Google Scholar 

  128. Yu X, Fautrelle Y, Ren ZM, Li X. PVA-assisted synthesis and characterization of core shell Bi nanobelts. Mater Lett. 2015;161:144.

    Article  CAS  Google Scholar 

  129. Yang QQ, Liu RT, Huang C, Huang YF, Gao LF, Sun B, Huang ZP, Zhang L, Hu CX, Zhang ZQ, Sun CL, Wang Q, Tang YL, Zhang HL. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale. 2018;10(45):21106.

    Article  CAS  PubMed  Google Scholar 

  130. Hussain N, Liang TX, Zhang QY, Anwar T, Huang Y, Lang JL, Huang K, Wu H. Ultrathin Bi nanosheets with superior photoluminescence. Small. 2017;13(36):1701349.

    Article  Google Scholar 

  131. Sun Y, Yuan JJ, Xin Y, Liu GW, Zhang F, Xing F, Fu SG. Broadband saturated absorption properties of bismuthene nanosheets. RSC Adv. 2021;11(55):35046.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Hu E, Yao Y, Cui Y, Qian G. Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Mater Today Nano. 2021;15(38):100124.

    Article  CAS  Google Scholar 

  133. Zhao HN, Xing ZP, Su SY, Song SJ, Xu TF, Li ZZ, Zhou W. Recent advances in metal organic frame photocatalysts for environment and energy applications. Appl Mater Today. 2020;21:15.

    Google Scholar 

  134. Zou ZH, Wang JL, Pan HR, Li J, Guo KL, Zhao YQ, Xu CL. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating. J Mater Chem A. 2020;8(28):14099.

    Article  CAS  Google Scholar 

  135. Degaga GD, Pandey R, Gupta C, Bharadwaj L. Tailoring of the electronic property of Zn-BTC metal-organic framework via ligand functionalization: an ab initio investigation. RSC Adv. 2019;9(25):14260.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  136. Nguyen HL. Metal-organic frameworks can photocatalytically split water-why not? Adv Mater. 2022;34(20):5.

    Article  Google Scholar 

  137. Tran NT, Trung LG, Nguyen MK. The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst. J Solid State Chem. 2021;300:8.

    Article  Google Scholar 

  138. Peng HJ, Zhu L, Wang YL, Chao HY, Jiang L, Qiao ZP. CdS/ZIF-67 nanocomposites with enhanced performance for visible light CO2 photoreduction ocr. Inorg Chem Commun. 2020;117:5.

    Article  Google Scholar 

  139. Qiu JH, Yang LY, Li M, Yao JF. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Mater Res Bull. 2019;112:297.

    Article  CAS  Google Scholar 

  140. Yue K, Zhang XD, Jiang ST, Chen JF, Yang Y, Bi FK, Wang YX. Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications. J Mol Liq. 2021;335:116108.

    Article  CAS  Google Scholar 

  141. Xu ML, Li DD, Sun K, Jiao L, Xie CF, Ding CM, Jiang HL. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew Chem Int Ed. 2021;60(30):16372.

    Article  CAS  Google Scholar 

  142. Qi XM, Wu Q, Wang XJ, Li KX, Liu C, Li SJ. Design of UiO-66@BiOIO3 heterostructural composites with remarkable boosted photocatalytic activities in removing diverse industrial pollutants. J Phys Chem Solids. 2021;151:109903.

    Article  CAS  Google Scholar 

  143. Dong JQ, Han X, Liu Y, Li HY, Cui Y. Metal-covalent organic frameworks (MCOFs): a bridge between metal-organic frameworks and covalent organic frameworks. Angew Chem Int Ed. 2020;59(33):13722.

    Article  CAS  ADS  Google Scholar 

  144. Geng KY, He T, Liu RY, Dalapati S, Tan KT, Li ZP, Tao SS, Gong YF, Jiang QH, Jiang DL. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020;120(16):8814.

    Article  CAS  PubMed  Google Scholar 

  145. Fuerte D, Valverde GA, Pintado SM, Díaz U, Sánchez F, Maya EM, Iglesias M. Phenyl extended naphthalene-based covalent triazine frameworks as versatile metal-free heterogeneous photocatalysts. Solar Rrl. 2022;6(2):2100848.

    Article  Google Scholar 

  146. Tan L, Wang ZL, Zhao ZF, Song YF. Recent progress on nanostructured layered double hydroxides for visible-light-induced photoreduction of CO2. Chem Asian J. 2020;15(21):3380.

    Article  CAS  PubMed  Google Scholar 

  147. Lv L, Yang ZX, Chen K, Wang CD, Xiong YJ. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv Energy Mater. 2019;9(17):29.

    Google Scholar 

  148. Vincente R. Layered double hydroxides: present and future. New York: Nova Science Publishers; 2001. p.115.

    Google Scholar 

  149. Xu ZP, Lu GQ. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem Mater. 2005;17(5):1055.

    Article  CAS  Google Scholar 

  150. Cermelj K, Ruengkajorn K, Buffet JC, O’Hare D. Layered double hydroxide nanosheets via solvothermal delamination. J Energy Chem. 2019;35:88.

    Article  Google Scholar 

  151. Lu XY, Xue HR, Gong H, Bai MJ, Tang DM, Ma RZ, Sasaki T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano Micro Lett. 2020;12(1):32.

    Article  ADS  Google Scholar 

  152. Li C, Jing HH, Wu Z, Jiang DH. Layered double hydroxides for photo(electro)catalytic applications: a mini review. Nanomaterials. 2022;12(19):3525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Starukh G. Photocatalytically enhanced cationic dye removal with Zn-Al layered double hydroxides. Nanoscale Res Lett. 2017;12(1):1.

    Article  CAS  Google Scholar 

  154. Su SD, Li XM, Tan MY, Zhang X, Wang YY, Duan YZ, Peng J, Luo M. Enhancement of the properties of ZnAl-LDHs for photocatalytic nitrogen reduction reaction by controlling anion intercalation. Inorg Chem Front. 2023;10(3):869.

    Article  CAS  Google Scholar 

  155. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23(37):4248.

    Article  CAS  PubMed  Google Scholar 

  156. Pang JB, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu ZF, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev. 2019;48(1):72.

    Article  CAS  PubMed  Google Scholar 

  157. Allen PK, Straka W, Keith D, Han SB, Reynolds L, Gautam B, Autrey DE. Tuning the magnetic properties of two-dimensional MXenes by chemical etching. Materials. 2021;14(3):9.

    Google Scholar 

  158. Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem. 2020;6(3):616.

    Article  CAS  Google Scholar 

  159. Yang YN, Cao ZR, Shi LJ, Wang RR, Sun J. Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions. Appl Surf Sci. 2020;533:147475.

    Article  CAS  Google Scholar 

  160. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248.

    Article  CAS  PubMed  Google Scholar 

  161. Qin R, Shan G, Hu M, Huang W. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater Today Phys. 2021;21:100527.

    Article  CAS  Google Scholar 

  162. Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013;23(17):2185.

    Article  CAS  Google Scholar 

  163. Ghosh K, Ghosh J, Giri PK. Accordion-like multilayered two-dimensional Ti3C2Tx MXenes for catalytic elimination of organic dyes from wastewater via the fenton reaction. ACS Appl Nano Mater. 2022;5(11):16451.

    Article  CAS  Google Scholar 

  164. Wei Y, Zhang P, Soomro RA, Zhu QZ, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33(39):30.

    Article  Google Scholar 

  165. Firouzjaei MD, Karimiziarani M, Moradkhani H, Elliott M, Anasori B. MXenes: the two-dimensional influencers. Mater Today Adv. 2022;13:100202.

    Article  Google Scholar 

  166. Chen L, Ye XY, Chen S, Ma L, Wang ZP, Wang QT, Hua NB, Xiao XQ, Cai SG, Liu XH. Ti3C2 MXene nanosheet/TiO2 composites for efficient visible light photocatalytic activity. Ceram Int. 2020;46(16):25895.

    Article  CAS  Google Scholar 

  167. Liu ZY, Zhou YH, Yang LJ, Yang RC. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production. Adv Powder Technol. 2021;32(12):4857.

    Article  CAS  Google Scholar 

  168. Zhuang Y, Liu YF, Meng XF. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly. Appl Surf Sci. 2019;496:143647.

    Article  CAS  Google Scholar 

  169. Zuo G, Wang Y, Wei LT, Xie A, Zhao Y. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene schottky junction nanohybrid. Chem Eng J. 2020;403:126328.

    Article  Google Scholar 

  170. Liu WZ, Sun MX, Ding ZP, Gao BW, Ding W. Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity. J Alloys Compd. 2021;877:160223.

    Article  CAS  Google Scholar 

  171. Yan H, Wang XD, Yao M, Yao XJ. Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci. 2013;23(4):402.

    Article  CAS  Google Scholar 

  172. Xiao M, Wang ZL, Lyu MQ, Luo B, Wang SC, Liu G, Cheng HM, Wang LZ. Hollow nanostructures for photocatalysis: advantages and challenges. Adv Mater. 2019;31(38):23.

    Article  Google Scholar 

  173. Wang DA, Hisatomi T, Takata T, Pan CS, Katayama M, Kubota J, Domen K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed. 2013;52(43):11252.

    Article  CAS  Google Scholar 

  174. Sun YJ, Xiong T, Dong F, Huang HW, Cen WL. Interlayer-I-doped BiOIO3 nanoplates with an optimized electronic structure for efficient visible light photocatalysis. Chem Commun. 2016;52(53):8243.

    Article  CAS  Google Scholar 

  175. Gou ZQ, Dai JH, Bai JW. Synthesis of mesoporous Bi2WO6 flower-like spheres with photocatalysis properties under visible light. Int J Electrochem Sci. 2020;15(11):10684.

    Article  CAS  Google Scholar 

  176. Xie H, Le Y. Synthesis of 2D-ordered spherical ZnO films for photocatalysis. Mater Technol. 2020;35(9–10):642.

    Article  CAS  ADS  Google Scholar 

  177. Lu M, Liu M, Wei Y, Xie H, Fan W, Huang J, Hu J, Wei P, Zhang W, Xie Y, Qi Y. Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation. J Alloys Compd. 2023;936:168273.

    Article  CAS  Google Scholar 

  178. Liu C, Qin Y, Guo W, Shi YZ, Wang ZW, Yu Y, Wu L. Visible-light-driven photocatalysis over nano-TiO2 with different morphologies: from morphology through active site to photocatalytic performance. Appl Surf Sci. 2022;580:152262.

    Article  CAS  Google Scholar 

  179. Sun YF, Gao S, Lei FC, Xie Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev. 2015;44(3):623.

    Article  CAS  PubMed  Google Scholar 

  180. Du J, Li S, Du Z, Meng S, Li B. Boron/oxygen-codoped graphitic carbon nitride nanomesh for efficient photocatalytic hydrogen evolution. Chem Eng J. 2020;407(9):127114.

    Google Scholar 

  181. Liu J, Zhang S, Zhao H. Fabricating visible-light photoactive 3D flower-like BiOCl nanostructures via a one-step solution chemistry method at room temperature. Appl Surf Sci. 2019;479(15):247.

    CAS  ADS  Google Scholar 

  182. Li DX, Masters P, Maschmeyer PT. Photocatalytic hydrogen evolution from silica-templated polymeric graphitic carbon nitride–is the surface area important? ChemCatChem. 2015;7(01):121.

    Article  CAS  Google Scholar 

  183. Chen SL, Xiong F, Huang WX. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surf Sci Rep. 2019;74(4):100.

    Article  Google Scholar 

  184. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 2008;453(7195):638.

    Article  CAS  PubMed  ADS  Google Scholar 

  185. Li DW, Yu SY, Geng HJ, Zhou W, Mu DD, Liu ST. The (002) exposing facets of WO3 boosting photocatalytic degradation of nitrobenzene. Appl Surf Sci. 2023;607:154996.

    Article  CAS  Google Scholar 

  186. Hu WH, Han GQ, Dai FN, Liu YR, Shang X, Dong B, Chai YM, Liu YQ, Liu CG. Effect of pH on the growth of MoS2 (002) plane and electrocatalytic activity for HER. Int J Hydrog Energy. 2016;41(1):294.

    Article  CAS  Google Scholar 

  187. Dang YY, Luo L, Wang W, Hu WF, Wen X, Lin KY, Ma BJ. Improving the photocatalytic H2 evolution of CdS by adjusting the (002) crystal facet. J Phys Chem C. 2022;126(3):1346.

    Article  CAS  Google Scholar 

  188. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. JACS. 2013;135(28):10411.

    Article  CAS  Google Scholar 

  189. Li LY, Xia YB, Zeng MQ, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev. 2022;51(17):7327.

    Article  CAS  PubMed  Google Scholar 

  190. Parangi T, Mishra MK. Titania nanoparticles as modified photocatalysts: a review on design and development. Comments Inorg Chem. 2019;39(2):90.

    Article  CAS  Google Scholar 

  191. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. JACS. 2013;135(28):10274.

    Article  CAS  Google Scholar 

  192. Li MY, Zhou ZZ, Hu L, Wang SY, Zhou YZ, Zhu RB, Chu XZ, Vinu A, Wan T, Cazorla C, Yi JB, Chu DW. Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications. ACS Appl Mater Interfaces. 2022;14(14):16338.

    Article  CAS  PubMed  Google Scholar 

  193. Liu YP, Li YH, Peng F, Lin Y, Yang SY, Zhang SS, Wang HJ, Cao YH, Yu H. 2H-and 1T-mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B Environ. 2019;241:236.

    Article  CAS  Google Scholar 

  194. Huang SQ, Xu YG, Ge FY, Tian D, Zhu XW, Xie M, Xu H, Li HM. Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. J Colloid Interface Sci. 2019;556:324.

    Article  CAS  PubMed  ADS  Google Scholar 

  195. Meng AY, Teng ZY, Zhang QT, Su CL. Intrinsic defects in polymeric carbon nitride for photocatalysis applications. Chem Asian J. 2020;15(21):3405.

    Article  CAS  PubMed  Google Scholar 

  196. Di J, Xiong J, Li HM, Liu Z. Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv Mater. 2018;30(1):1704548.

    Article  Google Scholar 

  197. Rohj RK, Hossain A, Mahadevan P, Sarma DD. Band gap reduction in ferroelectric BaTiO3 through heterovalent Cu-Te Co-doping for visible-light photocatalysis. Front Chem. 2021;9:682979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shao W, Wang H, Zhang XD. Elemental doping for optimizing photocatalysis in semiconductors. Dalton Trans. 2018;47(36):12642.

    Article  CAS  PubMed  Google Scholar 

  199. Su R, Bechstein R, Kibsgaard J, Vang RT, Besenbacher F. High-quality Fe-doped TiO2 films with superior visible-light performance. J Mater Chem A. 2012;22(45):23755.

    Article  CAS  Google Scholar 

  200. Li JX, Wang DD, Guan RQ, Zhang YJ, Zhao Z, Zhai HJ, Sun ZC. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain Chem Eng. 2020;8(49):18258.

    Article  CAS  Google Scholar 

  201. Li ZJ, Li SY, Davis AH, Hofman E, Leem G, Zheng WW. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020;13(6):1668.

    Article  CAS  Google Scholar 

  202. Ishaq T, Yousaf M, Bhatti IA, Ahmad M, Ikram M, Khan MU, Qayyum A. Photo-assisted splitting of water into hydrogen using visible-light activated silver doped g-C3N4 & CNTs hybrids. Int J Hydrog Energy. 2020;45(56):31574.

    Article  CAS  Google Scholar 

  203. Humayun M, Fu QY, Zheng ZP, Li HL, Luo W. Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl Catal A Gen. 2018;568:139.

    Article  CAS  Google Scholar 

  204. Luo H, Liu Y, Dimitrov SD, Steier L, Guo SH, Li XH, Feng JY, Xie F, Fang YX, Sapelkin A, Wang XC, Titirici MM. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. J Mater Chem A. 2020;8(29):14690.

    Article  CAS  Google Scholar 

  205. Tonda S, Kumar S, Kandula S, Shanker V. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A. 2014;2(19):6772.

    Article  CAS  Google Scholar 

  206. Shah JH, Shahid A, Idris AM, Rasheed S, Li C. Intrinsic photocatalytic water oxidation activity of Mn-doped ferroelectric BiFeO3. Chinese J Catal. 2021;42(6):945.

    Article  CAS  Google Scholar 

  207. Qin J, Huo J, Zhang P, Jian Z, Wang T, Zeng H. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale. 2016;8(4):2249.

    Article  CAS  PubMed  ADS  Google Scholar 

  208. Liu W, Zhao Y, Li H, Liu X, Liu W. Ag deposition on N and B co-doped TiO2 nanoparticles: an avenue for high-efficiency photocatalytic degradation of dye and hydrocarbons in oil-contaminated wastewater. NANO. 2021;16(4):2150042.

    Article  CAS  Google Scholar 

  209. Wang K, Li Q, Liu BS, Cheng B, Ho WK, Yu JG. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ. 2015;176:44.

    Google Scholar 

  210. Kong JZ, Zhai HF, Zhang W, Wang SS, Zhao XR, Li M, Li H, Li AD, Wu D. Visible light-driven photocatalytic performance of N-Doped ZnO/g-C3N4 nanocomposites. Nanoscale Res Lett. 2017;12(1):526.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  211. Wang DX, Wang S, Li BH, Zhang ZH, Zhang QJ. Tunable band gap of N-V co-doped Ca:TiO2-B (CaTi5O11) for visible-light photocatalysis. Int J Hydrog Energy. 2019;44(10):4716.

    Article  CAS  Google Scholar 

  212. Wang W, Tade MO, Shao ZP. Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog Mater Sci. 2018;92:33.

    Article  Google Scholar 

  213. Basavad M, Shokrollahi H, Golkari M. Effect of thermal cycle and Bi/Eu doping on the solubility of Ce in YIG. Ceram Int. 2020;46(12):20144.

    Article  CAS  Google Scholar 

  214. Li R, Chen TT, Lu JW, Hu HL, Zheng H, Zhu PF, Pan XL. Metal-organic frameworks doped with metal ions for efficient sterilization: enhanced photocatalytic activity and photothermal effect. Water Res. 2023;229:119366.

    Article  CAS  PubMed  Google Scholar 

  215. Li YY, Liu QF, Cui QN, Qi ZM, Wu JZ, Zhao H. Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS2. Nanoscale. 2017;9(48):19360.

    Article  CAS  PubMed  Google Scholar 

  216. Madeo J, Man MKL, Sahoo C, Campbell M, Pareek V, Wong EL, Al-Mahboob A, Chan NS, Karmakar A, Mariserla BMK, Li XQ, Heinz TF, Cao T, Dani KM. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science. 2020;370(6521):1199.

    Article  CAS  PubMed  ADS  Google Scholar 

  217. Hu HH, Qian DG, Lin P, Ding ZX, Cui C. Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting. Int J Hydrog Energy. 2020;45(1):629.

    Article  CAS  Google Scholar 

  218. Zheng XN, Li Y, Yang J, Cui SH. Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: mechanism and intermediates. Chem Eng J. 2021;422:12.

    Article  Google Scholar 

  219. Qiu JJ, Wei WD. Surface plasmon-mediated photothermal chemistry. J Phys Chem C. 2014;118(36):20735.

    Article  CAS  Google Scholar 

  220. Zhang P, Wang T, Gong JL. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv Mater. 2015;27(36):5328.

    Article  CAS  PubMed  Google Scholar 

  221. Fang L, Nan F, Yang Y, Cao D. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Appl Phys Lett. 2016;108(9): 093902.

    Article  ADS  Google Scholar 

  222. Shi WY, Song YY, Zhang XL, Duan D, Wang HY, Sun ZB. Nanoporous Pt/TiO2 nanocomposites with greatly enhanced photocatalytic performance. JCCS. 2018;65(11):1286.

    CAS  Google Scholar 

  223. Shi Y, Li L, Xu Z, Guo F, Li Y, Shi W. Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Appl Surf Sci. 2023;616:156466.

    Article  CAS  Google Scholar 

  224. Cui XF, Zhou Y, Wu J, Ling S, Zhao LJ, Zhang JL, Wang JW, Qin W, Zhang YG. Controlling Pt co-catalyst loading in a WO3 quantum dot and MoS2 nanosheet composite Z-scheme system for enhanced photocatalytic H2 evolution. Nanotechnology. 2020;31(18):185701.

    Article  CAS  PubMed  ADS  Google Scholar 

  225. Gao C, Wang J, Xu HX, Xiong YJ. Coordination chemistry in the design of heterogeneous photocatalysts. Chem Soc Rev. 2017;46(10):2799.

    Article  CAS  PubMed  Google Scholar 

  226. Huang L, Liu X, Wu HC, Wang XL, Wu HM, Li RG, Shi LY, Li C. Surface state modulation for size-controllable photodeposition of noble metal nanoparticles on semiconductors. J Mater Chem A. 2020;8(40):21094.

    Article  CAS  Google Scholar 

  227. Zhang FF, Zhu YL, Lin Q, Zhang L, Zhang XW, Wang HT. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci. 2021;14(5):2954.

    Article  CAS  Google Scholar 

  228. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang JW. Visible-light driven heterojunction photocatalysts for water splitting: a critical review. Energy Environ Sci. 2015;8(3):731.

    Article  CAS  Google Scholar 

  229. Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y, Duan XF. Van der Waals heterostructures and devices. Nat Rev Mater. 2016;1(9):17.

    Article  Google Scholar 

  230. Jariwala D, Marks TJ, Hersam MC. Mixed-dimensional van der Waals heterostructures. Nat Mater. 2017;16(2):170.

    Article  CAS  PubMed  ADS  Google Scholar 

  231. Liu Q, Chen T, Guo Y, Zhang Z, Fang X. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B Environ. 2016;193:248.

    Article  CAS  Google Scholar 

  232. Li YK, Zhang P, Wan DY, Xue C, Zhao JT, Shao GS. Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS2 nanosheets onto super-long TiO2 nanofibers. Appl Surf Sci. 2020;504:144361.

    Article  CAS  Google Scholar 

  233. Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst. Appl Catal B Environ. 2019;243:556.

    Article  CAS  Google Scholar 

  234. Chen YL, Su FY, Xie HQ, Wang RP, Ding CH, Huang JD, Xu X, Ye LQ. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2021;404:126498.

    Article  CAS  Google Scholar 

  235. Ping N, Zhang L, Gang L, Cheng H. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater. 2012;22(22):4763.

    Article  Google Scholar 

  236. Song XH, Wang M, Liu WT, Li X, Zhu Z, Huo PW, Yan YS. Thickness regulation of graphitic carbon nitride and its influence on the photocatalytic performance towards CO2 reduction. Appl Surf Sci. 2022;577:151810.

    Article  CAS  Google Scholar 

  237. Bie CB, Fu JW, Cheng B, Zhang LY. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl Surf Sci. 2018;462:606.

    Article  CAS  ADS  Google Scholar 

  238. Jin Y, Yu K. A review of optics-based methods for thickness and surface characterization of two-dimensional materials. J Phys D. 2021;54(39):393001.

    Article  CAS  Google Scholar 

  239. Wang Q, Liu ZQ, Liu DM, Wang W, Zhao ZW, Cui FY, Li GB. Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation. Chem Eng J. 2019;360:838.

    Article  CAS  Google Scholar 

  240. Niu P, Qiao M, Li Y, Huang L, Zhai T. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy. 2017;44:73.

    Article  Google Scholar 

  241. Salavati-fard T, Wang B. Significant role of oxygen dopants in photocatalytic PFCA degradation over h-BN. ACS Appl Mater Interfaces. 2021;13(39):46727.

    Article  CAS  PubMed  Google Scholar 

  242. Wang ZJ, Jin ZL, Wang GR, Ma BZ. Efficient hydrogen production over MOFs (ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles. Int J Hydrog Energy. 2018;43(29):13039.

    Article  CAS  Google Scholar 

  243. Li Q, Fan L, Zhang LH, Li Y, Chen CX, Zhao RT, Zhu W. Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites. J Solid State Chem. 2019;269:465.

    Article  CAS  ADS  Google Scholar 

  244. Li SM, Wu F, Lin RB, Wang J, Li CX, Li ZQ, Jiang J, Xiong YJ. Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chem Eng J. 2022;429:132217.

    Article  CAS  Google Scholar 

  245. Wei S, Fan S, Zhang M, Ren J, Jia B, Wang Y, Wu R, Fang Z, Liang Q. Dye-sensitized Bi2MoO6 for highly efficient photocatalytic degradation of levofloxacin under LED light irradiation. Mater Today Sustain. 2023;21:100311.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Youth Program (52204399), the Postdoctoral Research Foundation of China (2021MD703866), the Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30), Youth Innovation Team of Shaanxi Universities (2019-2022), Fok Ying Tung Education Foundation (171101), Natural Science Basic Research Program of Shaanxi Province (2022JQ-478), the Scientific Research Program of Youth Innovation Team of Shaanxi (22JP037), the Science and Technology Project of Universities and Institutes Staff Serving Enterprises in Xi'an (22GXFW0059) and Top Young Talents Project of “Special Support Program for High Level Talents” in Shaanxi Province (2018-2023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Hu or Fan Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author 1: Yang Fan is currently studying for a master’s degree in Xi’an University of Architecture and Technology; Author 3: Yang Fan is currently working as a postdoctoral researcher in Xi’an University of Architecture and Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Hu, P., Yang, F. et al. Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten 6, 77–113 (2024). https://doi.org/10.1007/s42864-023-00229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00229-x

Keywords

Navigation