Skip to main content
Log in

Frictional metallurgy induced formation and evolution of solder/Cu column interconnect microstructure and properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel friction micro-welding (FMW) technology was used for copper column connection of column grid array (CGA) packaging. The investigation found that its temperature and strain fields could induce formations of diverse interface layers and new solder microstructures. This discontinuous scalloped Cu6Sn5 or Pb(Ag)-rich adsorption layer could form at the upper interface with insufficient hold-tight force. The thin Cu/Sn diffusion layer formed at middle and lower interfaces with greater hold-tight force. The lower position friction pair could be transferred from the solder/Cu column interface to the inside of solders in the later stage of welding, and the reliable join where solder adhered to the Cu/Sn diffusion layer could form. High-temperature visco-plastic solders were not fully extruded from joints and became a micro-zone named stir flow zone (SFZ). In SFZ and dynamic recrystallization zone (DRZ), the friction could induce annealing softening of solders, weak bonding between dispersed intermetallic compound (IMC) particles and β-Sn matrix and low microstructure compactness, but could provide atomic rapid diffusion channels conducive to solid-phase welding. However, above adverse effects disappeared after aging. The average pull-out loads of the SAC305/Cu column and Sn37Pb/Cu column FMW joints increased respectively from 39.6 N and 31.9 N to 76.5 N and 59.3 N. By atomic diffusion, aging self-healing of FMW joints benefited from regeneration of the interface IMC layer, healing of crystal defects caused by friction deformations, dispersion reinforcement of scattered IMC particles in SFZ after solid-phase wetting and the generation of reticulated segregation phases with high melting points at grain boundaries of DRZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. R. Ghaffarian, Microelectron. Reliab. 46(12), 2006–2024 (2006). https://doi.org/10.1016/j.microrel.2006.07.094

    Article  Google Scholar 

  2. J. Lau, W. Dauksher, J. Electron. Packag. 127, 96–105 (2005). https://doi.org/10.1115/1.1846069

    Article  CAS  Google Scholar 

  3. E. Suhir, R. Ghaffarian, J. Nicolics, J. Mater. Sci.: Mater. Electron. 27, 570–579 (2016). https://doi.org/10.1007/s10854-015-3790-9

    Article  CAS  Google Scholar 

  4. S.B. Park, R. Joshi, Microelectron. Reliab. 48(5), 763–772 (2008). https://doi.org/10.1016/j.microrel.2007.12.008

    Article  CAS  Google Scholar 

  5. E. Suhir, R. Ghaffarian, J. Mater. Sci.: Mater. Electron. 27, 11572–11582 (2016). https://doi.org/10.1007/s10854-016-5288-5

    Article  CAS  Google Scholar 

  6. X.W. Hu, T. Xu, L.M. Keer, Y.L. Li, X.X. Jiang, J. Alloys Compd. 690, 720–729 (2017). https://doi.org/10.1016/j.jallcom.2016.08.168

    Article  CAS  Google Scholar 

  7. H. Nishikawa, N. Iwata, J. Mater. Process. Technol. 215, 6–11 (2015). https://doi.org/10.1016/j.jmatprotec.2014.08.007

    Article  CAS  Google Scholar 

  8. B.L. Liu, Y.H. Tian, W. Liu, W.W. Wu, C.Q. Wang, Mater. Lett. 163, 254–257 (2016). https://doi.org/10.1016/j.matlet.2015.10.108

    Article  CAS  Google Scholar 

  9. A.T. Tan, A.W. Tan, F. Yusof, Ultrason. Sonochem. 34, 616–625 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.039

    Article  CAS  Google Scholar 

  10. H.J. Ji, Y.F. Qiao, M.Y. Li, Scr. Mater. 110, 19–23 (2016). https://doi.org/10.1016/j.scriptamat.2015.07.036

    Article  CAS  Google Scholar 

  11. A.T. Tan, A.W. Tan, F. Yusof, J. Alloys Compd. 705, 188–197 (2017). https://doi.org/10.1016/j.jallcom.2017.02.165

    Article  CAS  Google Scholar 

  12. K.K. Zhang, X.J. Zhang, R.F. Qiu, H.X. Shi, Y.J. Liu, J. Mater. Sci.: Mater. Electron. 25, 1681–1686 (2014). https://doi.org/10.1007/s10854-014-1783-8

    Article  CAS  Google Scholar 

  13. M. Yang, S.H. Yang, H.J. Ji et al., J. Mater. Process. Technol. 236, 84–92 (2016). https://doi.org/10.1016/j.jmatprotec.2016.04.019

    Article  CAS  Google Scholar 

  14. H.B. Xu, M.Y. Li, Y.G. Fu, Solder. Surf. Mt. Technol. 21, 45–54 (2009). https://doi.org/10.1108/09540910910989439

    Article  CAS  Google Scholar 

  15. H.K. Yang, K. Cao, J. Lu, Y. Lu, Metal Mater. Trans. A 50A, 3013–3018 (2019). https://doi.org/10.1007/s11661-019-05209-w

    Article  CAS  Google Scholar 

  16. Y.Y. Long, F. Schneider, C. Li et al., Int. J. Precis. Eng. Manuf.-GT 6, 449–463 (2019). https://doi.org/10.1007/s40684-019-00061-0

    Article  Google Scholar 

  17. D.C. Cox, R.D. Forrest, P.R. Smith, V. Stolojan, S.R.P. Silva, Appl. Phys. Lett. 87, 033102–033101 (2005). https://doi.org/10.1063/1.1990268

    Article  CAS  Google Scholar 

  18. C.X. Chen, L.J. Yan, E.S.-W. Kong, Y.F. Zhang, Nanotechnology. 17, 2192–2197 (2006). https://doi.org/10.1088/0957-4484/17/9/019

    Article  CAS  Google Scholar 

  19. B. Zhao, G.H. Jiang, H.X. Qi, Ceram. Int. 42, 8098–8101 (2016). https://doi.org/10.1016/j.ceramint.2016.02.010

    Article  CAS  Google Scholar 

  20. Q. Jia, G.S. Zou, W.G. Wang, H. Ren et al., ACS Appl. Mater. Interfaces 12, 16743–16752 (2020). https://doi.org/10.1021/acsami.9b20731

    Article  CAS  Google Scholar 

  21. C.-H. Lee, E.-B. Choi, J.-H. Lee, Scr. Mater. 150, 7–12 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.029

    Article  CAS  Google Scholar 

  22. S.K. Bhogaraju, F. Conti, H.R. Kotadia, S. Keim, U. Tetzlaff, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156043

    Article  Google Scholar 

  23. Z.L. Zhao, L.R. Song, X. Liu, P. Wang, A rotary preheating friction micro-welding method. P.R.C. Patent. No.2017 -10763510.8, issued May 3, 2019

  24. L. Anand, J. Eng. Mater. Technol. 104, 12–17 (1982). https://doi.org/10.1115/1.3225028

    Article  Google Scholar 

  25. L. Xu, Z.B. Chen, W.J. Wang, Y.H. Fu, Y.P. Wu, J. Mater. Sci. 55, 10811–10823 (2020). https://doi.org/10.1007/s10853-020-04689-1

    Article  CAS  Google Scholar 

  26. J. Eckermann, S. Mehmood, H.M. Davies et al., Microelectron. Reliab. 54(6–7), 1235–1242 (2014). https://doi.org/10.1016/j.microrel.2014.02.017

    Article  CAS  Google Scholar 

  27. J.-H. Cho, S.-H. Han, C.-G. Lee, Mater. Lett. 180, 157–161 (2016). https://doi.org/10.1016/j.matlet.2016.05.157

    Article  CAS  Google Scholar 

  28. Y.S. Sato, Y. Nagahama, S. Mironov et al., Scr. Mater. 67, 241–244 (2012). https://doi.org/10.1016/j.scriptamat.2012.04.029

    Article  CAS  Google Scholar 

  29. A. Heidarzadeh, A. Chabok, Y.T. Pei, Mater. Lett. 245, 94–97 (2019). https://doi.org/10.1016/j.matlet.2019.02.108

    Article  CAS  Google Scholar 

  30. M. Imam, V. Racherla, K. Biswas et al., Int. J. Adv. Manuf. Technol. 91, 1753–1769 (2017). https://doi.org/10.1007/s00170-016-9865-9

    Article  Google Scholar 

  31. J. Zhao, Y. Miyashita, Y. Mutoh, Int. J. Fatigue 23, 723–731 (2001). https://doi.org/10.1016/S0142-1123(01)00034-2

    Article  CAS  Google Scholar 

  32. J. Han, S.H. TAN, F. Guo, J. Electron. Mater. 47, 124–132 (2018). https://doi.org/10.1007/s11664-017-5864-3

    Article  CAS  Google Scholar 

  33. B.T. Zhou, T.R. BIELER, T.-K. LEE, W.J. Liu, J. Electron. Mater. 42, 319–331 (2013). https://doi.org/10.1007/s11664-012-2307-z

    Article  CAS  Google Scholar 

  34. A. Gerlich, G.A. Cingara, T.H. North, Metal Mater. Trans. A 37, 2773–2786 (2006). https://doi.org/10.1007/BF02586110

    Article  Google Scholar 

  35. M. Watanabe, K. Feng, Y. Nakamura et al., Mater. Trans. 52, 953–959 (2011). https://doi.org/10.2320/matertrans.L-MZ201120

    Article  CAS  Google Scholar 

  36. Z.B. Wang, J. Lu, K. Lu, Acta Mater. 53, 2081–2089 (2005). https://doi.org/10.1016/j.actamat.2005.01.020

    Article  CAS  Google Scholar 

  37. M. Abbasi, M. Dehghani, H.U. Guim et al., Acta Mater. 117, 262–269 (2016). https://doi.org/10.1016/j.actamat.2016.06.064

    Article  CAS  Google Scholar 

  38. S. Fukumoto, H. Tsubakino, K. Okita et al., Scr. Mater. 42, 807–812 (2000). https://doi.org/10.1016/S1359-6462(00)00299-2

    Article  CAS  Google Scholar 

  39. L. Wan, Y.X. Huang, Int. J. Adv. Manuf. Technol. 99, 1781–1811 (2018). https://doi.org/10.1007/s00170-018-2601-x

    Article  Google Scholar 

  40. S.D. Ji, Z.W. Li, L.G. Zhang, Y. Wang, Mater. Lett. 188, 21–24 (2017). https://doi.org/10.1016/j.matlet.2016.10.032

    Article  CAS  Google Scholar 

  41. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science. 355, 1292–1296 (2017). https://doi.org/10.1126/science.aal5166

    Article  CAS  Google Scholar 

  42. W. Xu, X.C. Liu, X.Y. Li, K. Lu, Acta Mater. 182, 207–214 (2020). https://doi.org/10.1016/j.actamat.2019.10.036

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by (Grant Number [12531096]). Author Z.L. Zhao has received research support from the Scientific Research Foundation of Heilongjiang Province Education Department-China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZZ, KX, WQ, MH and JL. The first draft of the manuscript was written by ZZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhili Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiao, K., Quan, W. et al. Frictional metallurgy induced formation and evolution of solder/Cu column interconnect microstructure and properties. J Mater Sci: Mater Electron 34, 225 (2023). https://doi.org/10.1007/s10854-022-09675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09675-8

Navigation