Skip to main content
Log in

Refinement of some basic features of Zr surface-layered Bi-2223 superconductor with diffusion annealing temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aims to investigate the influences of diffusion annealing temperatures on structural, morphological, electrical, and superconducting features of Zr surface-layered Bi-2223 ceramics. The present study also covers an in-depth understanding of correlations between disorders and transition temperatures. The Zr diffusion is carried out via an annealing process between 650 and 840 °C. The observed results depict that the Zr ions can easily diffuse into the deeper level of Bi-ceramics and possible Zr/Bi substitution has occurred due to the driving force of high thermal energy. Besides, it is found that the Zr diffusion improves the general crystallinity quantities of Bi-2223 ceramic up to 800 °C annealing temperature. In addition, better intergranular couplings with a smoother plate-like structure are extensively observed in surface morphology for the samples annealed at 800 °C. Significant refinements of both basic electrical resistivity, hole carrier densities, and critical temperatures with narrow transitions are also obtained for the Zr surface-layered Bi-2223 ceramics after the 800 °C annealing process. The obtained improvements in critical fundamental features can be attributed to the optimum pairing mechanism, best crystal structure quality, ideal Cu–O2 interlayer coupling strengths, and enhanced interaction between adjacent superconductive layers. Besides, the first-order derivative of electrical resistivity versus temperature graphs indicates that the best annealing temperature enables to triggers to stabilize the superconductivity in the homogeneous regions. It can be concluded that the Zr impurity diffusion at 800 °C is promising for the improvement in the basic features of Bi-2223 superconducting systems for future applications in superconductor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Z. Liu, J. Zheng, J.Z. Chen, Z.X. Hu et al., J. Appl. Phys. 130, 183904 (2021)

    Article  CAS  Google Scholar 

  2. K. Sato, Bismuth-Based Oxide (BSCCO) High-Temperature Superconducting Wires for Power Grid Applications: Properties and Fabrication, in Superconductors in the Power Grid (Woodhead Publishing, New York, 2015)

    Book  Google Scholar 

  3. M.N. Wilson, Aip. Conf. Proc. 1435, 11–35 (2012)

    Article  CAS  Google Scholar 

  4. G. Yildirim, J. Alloys Compd. 699, 247–255 (2017)

    Article  CAS  Google Scholar 

  5. Y.T. Xing, P. Bernstein, J. Noudem, IEEET Appl Supercon. 31, 3600504 (2021)

    CAS  Google Scholar 

  6. A.S. Gour, P. Sagar, R. Karunanithi, Cryogenics 84, 76–80 (2017)

    Article  CAS  Google Scholar 

  7. J.B. Ketterson, The Physics of Solids (Oxford Scholarship, Oxford, 2016)

    Book  Google Scholar 

  8. C. Poole, P. Canfield, A.P. Ramirez, Handbook of Superconductivity (Academic Press, Columbia, 2000)

    Google Scholar 

  9. S. Boudjaoui, J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-022-06222-8

    Article  Google Scholar 

  10. I.A. Hernandez-Robles, A. Gonzalez-Parada, J.C. Olivares-Galvan, X. Gonzalez-Ramirez, IEEE Trans. Appl. Supercon 29, 15 (2019)

    Article  Google Scholar 

  11. N. Yonemura, K. Yamabe, Y. Shirai, S. Kobayashi et al., IEEE Trans. Appl. Supercon. 25, 5601104 (2015)

    Article  CAS  Google Scholar 

  12. O. Ozturk, E. Asikuzun, S. Kaya, M. Coskunyurek et al., J. Supercond. Nov. Magn. 25, 2481–2487 (2012)

    Article  CAS  Google Scholar 

  13. O. Bilgili, Y. Selamet, K. Kocabas, J. Supercond. Nov. Magn. 21, 439–449 (2008)

    Article  CAS  Google Scholar 

  14. U. Erdem, J. Mater. Sci-Mater. El. 32, 28587–28604 (2021)

    Article  CAS  Google Scholar 

  15. Y. Zalaoglu, U. Erdem, F.C. Bolat, B. Akkurt et al., J. Mater. Sci-Mater. El. 32, 19846–19858 (2021)

    Article  CAS  Google Scholar 

  16. R. Cabassi, D. Delmonte, M.M. Abbas, A.R. Abdulridha, E. Gilioli, Curr. Comput.-Aided Drug Des. 10, 15 (2020)

    Google Scholar 

  17. H. Aydin, A. Babanli, S.P. Altintas, E. Asikuzun et al., J. Mater. Sci-Mater. El. 24, 4566–4573 (2013)

    Article  CAS  Google Scholar 

  18. M. Dogruer, C. Aksoy, G. Yildirim, O. Ozturk, C. Terzioglu, J. Mater. Sci-Mater. El. 32, 7073–7089 (2021)

    Article  CAS  Google Scholar 

  19. A. Sedky, A. Salah, J. Electron. Mater. 51, 3042–3058 (2022)

    Article  CAS  Google Scholar 

  20. H. Fallah-Arani, A. Sedghi, S. Baghshahi, F.S. Tehrani et al., J. Alloys Compd. 900, 163201 (2022)

    Article  CAS  Google Scholar 

  21. M.Y. Tian, J.F. Wang, H.J. Du, C.X. Ma, B. Wang, Acta Phys. Sin-Ch. Ed. 70, 170703 (2021)

    Article  Google Scholar 

  22. J. Kumar, P.K. Ahluwalia, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 493–499 (2010)

    Article  CAS  Google Scholar 

  23. N.G. Margiani, G.A. Mumladze, I.G. Kvartskhava, A.S. Kuzanyan et al., IEEE T. Appl. Supercon. 32, 7200205 (2022)

    Article  CAS  Google Scholar 

  24. N.V. Zavaritskii, V.N. Zavaritskii, Y.F. Orekhov, A.P. Mackenzie, Jetp. Lett. 60, 193–198 (1994)

    Google Scholar 

  25. B. Ozcelik, O. Nane, A. Sotelo, M.A. Madre, Ceram. Int. 42, 3418–3423 (2016)

    Article  CAS  Google Scholar 

  26. R. Asghari, H. Naghshara, L.C. Arsalan, H. Sedghi, J. Supercond. Nov. Magn. 31, 3889–3898 (2018)

    Article  CAS  Google Scholar 

  27. A. Ekicibil, A. Coskun, B. Ozcelik, K. Kiymac, J. Low Temp. Phys. 140, 105–117 (2005)

    Article  CAS  Google Scholar 

  28. N. El Ghouch, R. Al-Oweini, R. Awad, Appl. Phys. A 125, 854 (2019)

    Article  CAS  Google Scholar 

  29. N.A.A. Yahya, R. Al-Gaashani, R. Abd-Shukor, Appl. Phys. A 123, 168 (2017)

    Article  CAS  Google Scholar 

  30. E. Hannachi, K.A. Mahmoud, A.H. Almuqrin, M.I. Sayyed, Y. Slimani, Materials 15, 1034 (2022)

    Article  CAS  Google Scholar 

  31. M. Pakdil, E. Bekiroglu, M. Oz, N.K. Saritekin, G. Yildirim, J. Alloys Compd. 673, 205–214 (2016)

    Article  CAS  Google Scholar 

  32. S. Adachi, R. Matsumoto, H. Hara, Y. Saito et al., Appl. Phys. Express 12, 043002 (2019)

    Article  CAS  Google Scholar 

  33. Y. Zalaoglu, G. Yildirim, J. Mater. Sci-Mater. El. 28, 17693–17701 (2017)

    Article  CAS  Google Scholar 

  34. J.C. Slater, J. Chem. Phys. 41, 3199 (1964)

    Article  CAS  Google Scholar 

  35. A.K. Jassim, M.M. Abbas, J. Phys: Conf. Ser. 2114, 012065 (2021)

    Google Scholar 

  36. Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing et al., Physica C 337, 130–132 (2000)

    Article  CAS  Google Scholar 

  37. M.A. Almessiere, Y. Slimani, M. Sertkol, M. Nawaz et al., Results Phys. 13, 102244 (2019)

    Article  Google Scholar 

  38. V.V. Smirnov, O.S. Antonova, S.V. Smirnov, M.A. Goldberg et al., Inorg. Mater. 53, 1254–1260 (2017)

    Article  CAS  Google Scholar 

  39. N.K. Saritekin, M. Pakdil, G. Yildirim, M. Oz, T. Turgay, J. Mater. Sci-Mater. El. 27, 956–965 (2016)

    Article  CAS  Google Scholar 

  40. N. Ahmad, S. Khan, J. Alloys Compd. 720, 502–509 (2017)

    Article  CAS  Google Scholar 

  41. S. Kaya, J. Alloys Compd. 778, 889–899 (2019)

    Article  CAS  Google Scholar 

  42. J.Y. Suh, R. Lopez, L.C. Feldman, R.F. Haglund, J. Appl. Phys. 96, 1209–1213 (2004)

    Article  CAS  Google Scholar 

  43. S. Oztel, S. Kaya, E. Budak, E. Yilmaz, J. Mater. Sci. 30, 14813–14821 (2019)

    CAS  Google Scholar 

  44. A. Aftabi, M. Mozaffari, Sci. Rep-UK. 11, 4341 (2021)

    Article  CAS  Google Scholar 

  45. B. Akkurt, U. Erdem, Y. Zalaoglu, A.T. Ulgen et al., J. Mater. Sci. 32, 5035–5049 (2021)

    CAS  Google Scholar 

  46. W. Miller, K. Borowko, M. Gazda, S. Stizza, R. Natali, Acta Phys. Pol. A 109, 627–631 (2006)

    Article  CAS  Google Scholar 

  47. S. Kaya, E. Yilmaz, H. Karacali, A.O. Cetinkaya, A. Aktag, Mat. Sci. Semicon. Proc. 33, 42–48 (2015)

    Article  CAS  Google Scholar 

  48. M. Dogruer, G. Yildirim, C. Terzioglu, Mater. Chem. Phys. 288, 126350 (2022)

    Article  CAS  Google Scholar 

  49. G. Yildirim, S. Bal, E. Yucel, M. Dogruer et al., J. Supercond. Nov. Magn. 25, 381–390 (2012)

    Article  CAS  Google Scholar 

  50. X. Xu, J.H. Kim, S.X. Dou, S. Choi et al., J. Appl. Phys. 105, 103913 (2009)

    Article  CAS  Google Scholar 

  51. M.L. Li, Y. Zhang, Y. Li, Y. Qi, J. Non-Cryst, Solids 356, 2831–2835 (2010)

    CAS  Google Scholar 

  52. M.B. Turkoz, Y. Zalaoglu, T. Turgay, O. Ozturk et al., Ceram. Int. 45, 21183–21192 (2019)

    Article  CAS  Google Scholar 

  53. M. Sahoo, D. Behera, J. Supercond. Nov. Magn. 27, 83–93 (2014)

    Article  CAS  Google Scholar 

  54. S.B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt et al., J. Alloy. Compd. 772, 388–398 (2019)

    Article  CAS  Google Scholar 

  55. P.B. Allen, W.E. Pickett, H. Krakauer, Phys. Rev. B 37, 7482–7490 (1988)

    Article  CAS  Google Scholar 

  56. T.A. Coombs, I.E.E.E.T. Appl, Supercon. 21, 3581–3586 (2011)

    CAS  Google Scholar 

  57. A.T. Ulgen, Ü. Erdem, G. Yildirim, M.B. Turkoz, T. Turgay, Bol. Soc. Esp. Ceram. Vidr. (2022). https://doi.org/10.1016/j.bsecv.2022.02.006

    Article  Google Scholar 

  58. S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Physica C 463, 464–467 (2007)

    Article  CAS  Google Scholar 

  59. M. Chen, W. Paul, M. Lakner, L. Donzel et al., Physica C 372, 1657–1663 (2002)

    Article  Google Scholar 

  60. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 493, 11–16 (2010)

    Article  CAS  Google Scholar 

  61. U. Erdem, Y. Zalaoglu, A.T. Ulgen, T. Turgay, G. Yildirim, Cryogenics 113, 103212 (2021)

    Article  CAS  Google Scholar 

  62. H. Yamauchi, M. Karppinen, Supercond. Sci. Tech. 13, R33–R52 (2000)

    Article  CAS  Google Scholar 

  63. J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  64. N. Plakida, High Temperature Cuprate Superconductors (Springer Series in Solid-State Sciences, New York, 2010)

    Book  Google Scholar 

  65. M.B. Turkoz, Y. Zalaoglu, T. Turgay, O. Ozturk, G. Yildirim, Ceram. Int. 45, 22912–22919 (2019)

    Article  CAS  Google Scholar 

  66. M.B. Turkoz, M. Oz, T. Turgay, G. Yildirim, Theory Res. Sci. Math.II 15, 139 (2020)

    Google Scholar 

  67. T. Turgay, G. Yildirim, J. Mater. Sci. 30, 7314–7323 (2019)

    CAS  Google Scholar 

  68. R. Awad, A.I. Abou-Aly, M.M.H.A. Gawad, I. G-Eldeen, J. Supercond. Magn. 25, 739–745 (2012)

    Article  CAS  Google Scholar 

  69. U. Erdem, M.B. Turkoz, G. Yildirim, Y. Zalaoglu, S. Nezir, J. Alloys Compd. 884, 161131 (2021)

    Article  CAS  Google Scholar 

  70. K. Salama, V. Selvamanickam, L. Gao, K. Sun, Appl. Phys. Lett. 54, 2352–2354 (1989)

    Article  CAS  Google Scholar 

  71. D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Phys. Rev. B 43, 3075–3084 (1991)

    Article  CAS  Google Scholar 

  72. H. Eskes, G.A. Sawatzky, Phys. Rev. Lett. 61, 1415–1418 (1988)

    Article  CAS  Google Scholar 

  73. T. Turgay, G. Yildirim, Y. Zalaoglu, J. Mater. Sci. 29, 18088–18097 (2018)

    CAS  Google Scholar 

  74. G. Deutscher, O. Entin-Wohlman, S. Fishman, Y. Shapira, Phys. Rev. B 21, 5041–5047 (1980)

    Article  CAS  Google Scholar 

  75. Y.M. Strelniker, A. Frydman, S. Havlin, Phys. Rev. B 76, 224528 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by own budget of the authors and partially supported by Bolu Abant Izzet Baysal University with contact no 2022.09.03.1560. This study forms a part of the MSc thesis of Emre ORHAN. We would like to thank to physics department. The authors also would like to thank to pyPENELOPE development group (http://pypenelope.sourceforge.net) for open source and free usage of the simulation package used for electron trajectory specification in Fig.3g in this study.

Funding

This work was partially supported by Bolu Abant Izzet Baysal University with contact no 2022.09.03.1560.

Author information

Authors and Affiliations

Authors

Contributions

All the authors analyzed and discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Ş. Kaya.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, E., Kara, E., Kaya, Ş. et al. Refinement of some basic features of Zr surface-layered Bi-2223 superconductor with diffusion annealing temperature. J Mater Sci: Mater Electron 33, 20696–20712 (2022). https://doi.org/10.1007/s10854-022-08880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08880-9

Navigation