Skip to main content
Log in

An effective research for diffusion annealing temperature and activation energy in Au surface-layered Bi-2212 ceramic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study tries to respond two fundamental questions such as (I) what is the role of Au inclusions in the Bi-2212 polycrystalline materials prepared at the diffusion annealing temperature of 600–850 °C on the stabilization of superconductivity in small homogeneous regions and (II) what are the diffusion coefficient and corresponding activation energy of Au inclusions for the Bi-2212 superconducting system. Solution of the former question is in association with the characteristic pairing and coherence transitions extracted from the detailed dc resistivity versus temperature measurements when the latter questions are answered by the change of sample resistivity after the removal of thin-layer from the surface with the aid of the Arrhenius relation for the first time. The experimental measurement results show that the optimum diffusion annealing temperature is observed to be 800 °C where the minor phase, local structural distortions, dislocations, lattice defects and disorders in the Bi-2212 compounds degrade considerably and reach the global minimum points. Similarly, the Josephson coupled energy resides in the maximum value, and thus the superconducting grains become more and more coupled due to the increment in the percolation of intergrains. Moreover, the diffusion coefficient of Au individuals is obtained to increase regularly from 3.6186 × 10−8 to 2.79278 × 10−7 cm2 s−1 with the enhancement in the diffusion annealing temperature. At the same time, the temperature-dependent diffusion coefficient and related activation energy values of Au are computed to be about 2.601 × 10− 6 cm2 s−1 and 1.523 eV, respectively. According to the results calculated, 1.523 eV is the required minimum activation energy for the penetration of Au (heavy metal) ions into the Bi-2212 crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, IEEE T. Appl. Supercond. 23, 5602804 (2013)

    Article  Google Scholar 

  2. T.A. Coombs, IEEE T. Appl. Supercond. 21, 3581 (2011)

    Article  Google Scholar 

  3. H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, J. Appl. Phys. 111, 103910 (2012)

    Article  Google Scholar 

  4. F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)

    Article  Google Scholar 

  5. K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, Curr. Appl. Phys. 11, 1020 (2011)

    Article  Google Scholar 

  6. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications. (Wiley-VCH Verlag, Weinheim, 2004)

    Book  Google Scholar 

  7. N.K. Saritekin, M. Pakdil, E. Bekiroglu, G. Yildirim, J. Alloy. Compd. 688, 637 (2016)

    Article  Google Scholar 

  8. A.M. Hermann, J.V. Yakhmi, Thallium-Based High-Temperature Superconductors, (Marcel Dekker, New York, 1994).

    Google Scholar 

  9. G.W. Michel, M. Herviev, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveav, Z. Phys. B 68, 421 (1987)

    Article  Google Scholar 

  10. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L209 (1987)

    Article  Google Scholar 

  11. J.M. Tarascon, Y. Lepage, L.H. Greene, B.G. Bagley, P. Barboux, D.M. Hwang, G.W. Hull, W.R. Mckinnon, M. Giroud, Phys. Rev. B 38, 2504 (1988)

    Article  Google Scholar 

  12. A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454 (2005)

    Article  Google Scholar 

  13. Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci. 24, 239 (2013)

    Google Scholar 

  14. J. Tarascon, W. McKinnon, P. Barboux, D. Hwang, B. Bagley, L. Greene, G. Hull, Y. Lepage, N. Stoffel, M. Giroud, Phys. Rev. B 38, 8885 (1988)

    Article  Google Scholar 

  15. K. Koyama, S. Kanno, S. Noguchi, Jpn. J. Appl. Phys. 29, L53 (1990)

    Article  Google Scholar 

  16. H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, AIP Conf. Proc. 986, 423, (2008)

    Article  Google Scholar 

  17. L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, Supercond. Sci. Technol. 3, 490 (1990)

    Article  Google Scholar 

  18. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. Van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, Appl. Phys. Lett. 52, 2074 (1988)

    Article  Google Scholar 

  19. K. Salama, V. Selymanickam, L. Gao, K. Sun, Appl. Phys. Lett. 54, 2352 (1989)

    Article  Google Scholar 

  20. T. Egi, J.G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, Appl. Phys. Lett. 67, 2406 (1995)

    Article  Google Scholar 

  21. J.M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, Supercond. Sci. Technol. 21, 032001 (2008)

    Article  Google Scholar 

  22. O. Ozturk, E. Asikuzun, S. Kaya, M. Coskunyurek, G. Yildirim, M. Yilmazlar, C. Terzioglu, J. Supercond. Nov. Magn. 25, 2481 (2012)

    Article  Google Scholar 

  23. G. Yildirim, J. Alloy. Compd. 699, 247 (2017)

    Article  Google Scholar 

  24. Y. Zalaoglu, F. Karaboga, C. Terzioglu, G. Yildirim, Ceram. Int. 43, 6836 (2017)

    Article  Google Scholar 

  25. M. Doğruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Pow. Tech. 246, 553 (2013)

    Article  Google Scholar 

  26. P. Grathwohl, Diffusion in natural porous media: contaminant transport, sorption/ desorption and dissolution kinetics, (Kluwer Academic, Dordrecht, 1998)

    Book  Google Scholar 

  27. G.B. Abdullaev, T.D. Dzhafarov, Atomic Diffusion in Semiconductor Structures. (Harwood, New York, 1987)

    Google Scholar 

  28. M. Dogruer, Y. Zalaoglu, O. Gorur, O. Ozturk, G. Yildirim, A. Varilci, E. Yucel, C. Terzioglu, J. Mater. Sci. Mater. El 24, 776 (2013)

    Article  Google Scholar 

  29. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloy. Compd. 493, 11 (2010)

    Article  Google Scholar 

  30. T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Thin Solid Films 516, 2913 (2008)

    Article  Google Scholar 

  31. A. Junod, in Physical Properties of High Temperature Superconductors, ed. by D.M. Ginsberg (World Scientific, Singapore, 1990)

    Google Scholar 

  32. P. Pureur, R. Menegotto Costa, P. Rodrigues Jr., J. Schaf, J.V. Kunzler, Phys. Rev. B 47, 11420 (1993)

    Article  Google Scholar 

  33. G. Deutscher, O. Entin-Wohlman, S. Fishman, Y. Shapira, Phys. Rev. B 21, 5041 (1980)

    Article  Google Scholar 

  34. Y.M. Strenlniker, A. Frydman, S. Havlin, Phys. Rev. B 76, 224528 (2007)

    Article  Google Scholar 

  35. A. Diaz, J. Maza, F. Vidal, Phys. Rev. B 55, 1209 (1997)

    Article  Google Scholar 

  36. M. Pakdil, E. Bekiroglu, M. Oz, N.K. Saritekin, G. Yildirim, J. Alloy. Compd. 673, 205 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by Abant Izzet Baysal University Scientific Research Project Coordination Unit (Project No: 2014.09.05.685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zalaoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalaoglu, Y., Yildirim, G. An effective research for diffusion annealing temperature and activation energy in Au surface-layered Bi-2212 ceramic composites. J Mater Sci: Mater Electron 28, 17693–17701 (2017). https://doi.org/10.1007/s10854-017-7707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7707-7

Navigation