Skip to main content
Log in

Structural, morphology, and radiation shielding properties of Mg2FeTiO6 ceramic modified with different concentrations of ZnO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a new series of Mg2(1−x)Zn2xFeTiO6 ceramics samples was prepared to investigate the structural, morphology and radiation shielding features. The X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM), and UV-vis-NIR were used to explore the structural, morphology, and optical properties for current ceramics samples. Radiation shielding properties for different ionizing radiation such as neutrons, protons, alpha particles, and gamma-ray were investigated theoretically. The XRD results display the monoclinic structure for all ceramics samples. FTIR results reveal five vibrational bands. The SEM results appear particles stoned, sharp, and agglomerated. The bandgap and the density show gradual enhancement with adding ZnO. On another hand, the S6 sample exhibits the highest gamma shielding properties and the fast neutron removal cross section (ΣR). In contrast, sample S1 appears maximum mass stopping power (MSP) for proton and alpha particles. The obtained results nominate the sample S6 to use in the radiation shielding field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, “Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium.“ Ceramics International 46, 28877–28886 (2020)

    CAS  Google Scholar 

  2. H. Eskalen, Y. Kavun, Süleyman Kerli, and Selami Eken. “An investigation of radiation shielding properties of boron doped ZnO thin films. Opt. Mater. 105, 109871 (2020)

    Article  CAS  Google Scholar 

  3. M. Usta, and Ali Tozar. “The effect of the ceramic amount on the radiation shielding properties of metal-matrix composite coatings. Radiat. Phys. Chem. 177, 109086 (2020)

    Article  CAS  Google Scholar 

  4. M. Celli, F. Grazzi, M. Zoppi, A new ceramic material for shielding pulsed neutron scattering instruments. Nuclear Instruments Meth. Phys. Res. Sect. 565, 861–863 (2006)

    Article  CAS  Google Scholar 

  5. K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, “Gamma-ray shielding and structural properties of PbO–SiO2 glasses.“ Nuclear Instruments and Methods. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 266, 944–948 (2008)

    CAS  Google Scholar 

  6. N.C. Papanikolaou, G. Eleftheria, S. Hatzidaki, G.N. Belivanis, Tzanakakis, M. Aristidis, Tsatsakis. “Lead toxicity update. A brief review. Med. Sci. Monit. 11, RA329 (2005)

    CAS  Google Scholar 

  7. T. Ghrib, M.H.A. Mhareb, M.I. Sayyed, Y.S.M. Alajerami, N. Dwaikat, A. Ben Ali, M.A. Gondal, “Structural, optical and radiation shielding properties of Zirconium–Titanium–Thallium Ternary Oxide (0.5 ZrO2-(0.5-x) TiO2-xTl2O3)." Ceram. Int. 47, 21837–21847 (2021)

    Article  CAS  Google Scholar 

  8. A. Ripin, F. Mohamed, T.F. Choo, M.R. Yusof, S. Hashim, and dan SK Ghoshal. “X-ray shielding behaviour of kaolin derived mullite-barites ceramic. Radiat. Phys. Chem. 144, 63–68 (2018)

    Article  CAS  Google Scholar 

  9. M.H.A. Mhareb, M. Alqahtani, F. Alshahri, Y.S.M. Alajerami, N. Saleh, N. Alonizan, M.I. Sayyed et al., The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-cryst. Solids 541, 120090 (2020)

    Article  CAS  Google Scholar 

  10. N. Singh, K.J. Singh, K. Singh, H. Singh, Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nuclear Instruments  Meth. Phys. Res. Sect. B 225, 305–309 (2004)

    Article  CAS  Google Scholar 

  11. M.I. Sayyed, H. Alyaa, M. Abdalsalam, Malaa, M.H.A. Taki, Mhareb, Bünyamin Alim, Ali Baltakesmez, and Erdem Şakar. “MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications. Radiat. Phys. Chem. 172, 108852 (2020)

    Article  CAS  Google Scholar 

  12. V. Harish, N. Nagaiah, H.G.H. Kumar, “Lead oxides filled isophthalic resin polymer composites for gamma radiation shielding applications”. Indian J. Pure Appl. Phys. 50(11), 847–850 (2012)

    CAS  Google Scholar 

  13. N. AbuAlRoos, Jamal, Noorfatin Aida Baharul Amin, and Rafidah Zainon. “Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 165, 108439 (2019)

    Article  CAS  Google Scholar 

  14. R.M. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, M. Kh Hamad, and KhA Ziq. “A comprehensive ionizing radiation shielding study of FexSe0. 5Te0. 5 alloys with various iron concentrations. J. Alloys Compd. 858, 157636 (2021)

    Article  CAS  Google Scholar 

  15. T. Ghrib, F. Ercan, T.S. Kayed, T.H. Flemban, Y. Mesut, O. Kaygili, I. Ercan, Structural, Optical, Dielectric and Magnetic Properties of Double Perovskite Oxides A2FeTiO6 (A = Zn, Mg, Cu) Nanopowders. Arab. J. Sci. Eng. 47, 7609–7620 (2022)

    Article  CAS  Google Scholar 

  16. Y. Slimani, M. Kh Hamad, I.O. Olarinoye, Y.S. Alajerami, M.I. Sayyed, M.A. Almessiere, and M. H. A. Mhareb. “Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. J. Mater. Sci.: Mater. Electron. 32, 20867–20881 (2021)

    CAS  Google Scholar 

  17. I. Massoudi, T. Ghrib, A.L. Al-Otaibi, K. Al-Hamadah, S. Al-Malky, M. Al-Otaibi, M. Al-Yatimi, Effect of Yttrium Substitution on Microstructural, Optical, and Photocatalytic Properties of ZnO Nanostructures. J. Electron. Mater. 49, 5353–5362 (2020)

    Article  CAS  Google Scholar 

  18. D.C. Look, C. Donald, J.R. Reynolds, R.L. Sizelove, W. Jones, Cole, G. Litton, Cantwell, W.C. Harsch, “Electrical Prop. bulk ZnO " Solid state Commun. 105(6), 399–401 (1998)

    Article  CAS  Google Scholar 

  19. K. Selvi, K. Tamizh, M. Alamelu Mangai, Priya, S. Sagadevan, Enhanced electrical and magnetic properties of CuO/MgO nanocomposites. Chem. Phys. Lett. 765, 138320 (2021)

    Article  Google Scholar 

  20. J.A. Abdalla, B.S. Thomas, R.A. Hawileh, J. Yang, B.B. Jindal, E. Ariyachandra, Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete. Clean. Mater. 4, 100061 (2022)

    Article  CAS  Google Scholar 

  21. M.J. Berger, J.H. Hubbell, XCOM: Photon cross sections on a personal computer. No. NBSIR-87-3597 (National Bureau of Standards, Washington, DC (USA, Center for Radiation Research, 1987)

    Google Scholar 

  22. E. Şakar, ÖzgürF. Özpolat, B. Alım, M.I. Sayyed, and Murat Kurudirek. “Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  23. J.F. Ziegler, D. Matthias, Ziegler, P. Jochen, Biersack, “SRIM–The stopping and range of ions in matter (2010).“ Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with. Mater. Atoms 268, 1818–1823 (2010)

    CAS  Google Scholar 

  24. A.L. Al-Otaibi, T. Ghrib, M. Alqahtani, M.A. Alharbi, Ridha Hamdi, and Imen Massoudi. “Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts. " Chem. Phys. 525, 110410 (2019)

    Article  CAS  Google Scholar 

  25. T. Ghrib, I. Massoudi, A.L. Al-Otaibi, A. Al-Malki, A. Kharma, E. Al-Hashem, R.A. Al-Ghamdi, A. Ruba, Al-Zuraie, Effects of Terbium Doping on Structural, Optical and Photocatalytic Properties of ZnO Nanopowder Prepared by Solid-State Reaction. J. Inorg. Organomet. Polym Mater. 31, 239–250 (2021)

    Article  CAS  Google Scholar 

  26. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, and K. G. M. Nair. “Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys. 102, 093515 (2007)

    Article  Google Scholar 

  27. L. Boudad, M. Taibi, A. Belayachi, M. Abd-Lefdil, “Sol-gel synthesis and characterization of novel double perovskites RBaFeTiO6 (R = Pr, Nd). " Ceram. Int. 48, 6087–6096 (2022)

    Article  CAS  Google Scholar 

  28. R. Abirami, T.S. Senthil, C.R. Kalaiselvi, “Preparation of pure PbTiO3 and (Ag–Fe) codoped PbTiO3 perovskite nanoparticles and their enhanced photocatalytic activity.“. Solid State Commun. 327, 114232 (2021)

    Article  CAS  Google Scholar 

  29. M.I. Sayyed, Q. Faras, K.A. Mohammed, E. Mahmoud, K.M. Lacomme, Kaky, Mayeen Uddin Khandaker, and Mohammad Rashed Iqbal Faruque. “Evaluation of radiation shielding features of Co and Ni-based superalloys using MCNP-5 code: potential use in nuclear safety. " Appl. Sci. 10, 7680 (2020)

    Article  CAS  Google Scholar 

  30. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, Michael Adekunle Olatunji, and Masud Kamal. “Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results in Physics 9, 541–549 (2018)

    Article  Google Scholar 

  31. R. Sharma, V. Sharma, Parjit S. Singh, and Tejbir Singh. “Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149 (2012)

    Article  CAS  Google Scholar 

  32. M. Dong, X. Xue, H. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 141, 239–244 (2017)

    Article  CAS  Google Scholar 

  33. M.I. Sayyed, H. Aljawhara, A. Almuqrin, J.F.M. Kumar, I. Akkurt. Jecong, Optical, mechanical properties of TeO2-CdO-PbO-B2O3 glass systems and radiation shielding investigation using EPICSlibrary. Optik 242, 167342 (2021)

    Article  CAS  Google Scholar 

  34. A.H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 1–11 (2021)

    Article  Google Scholar 

  35. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)

    Article  CAS  Google Scholar 

  36. M.H.A. Mhareb, M. Zeama, M. Elsafi, Y.S. Alajerami, M.I. Sayyed, G. Saleh, R.M. Hamad, and M. Kh Hamad. “Radiation shielding features for various tellurium-based alloys: A comparative study. J. Mater. Sci.: Mater. Electron. 32, 26798–26811 (2021)

    CAS  Google Scholar 

  37. M.H.A. Mhareb, Y.S.M. Alajerami, N. Dwaikat, M.S. Al-Buriahi, M. Alqahtani, F. Alshahri, N. Saleh, N. Alonizan, M.A. Saleh, M.I. Sayyed, Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nuclear Eng. Technol. 53, 949–959 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their written permission to be named. If we have not included an Acknowledgements, then that indicates that we have not received substantial contributions from non-authors.

Funding

The study was supported by Grant No. 2020-068-BASRC from the Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study MHAM, MYA, TG acquisition of data: TG, YSA, MHAM, MIS analysis and/or interpretation of data: MIS, MHAM, FE, WA, DA Drafting the manuscript: MIS, MHAM, TG, NS, NA, WA, DA, MYA revising the manuscript critically for important intellectual content: MHAM, TG. Approval of the version of the manuscript to be published (the names of all authors must be listed): MYA, NS, MHAM, TG, MIS, YSMA, FE, NA, WA, DA.

Corresponding author

Correspondence to M. H. A. Mhareb.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflicts of interest.

Research involved in human and animal rights

This article does not contain any studies involving human participants performed by any of the authors. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.Y., Saleh, N., Mhareb, M.H.A. et al. Structural, morphology, and radiation shielding properties of Mg2FeTiO6 ceramic modified with different concentrations of ZnO. J Mater Sci: Mater Electron 33, 18829–18845 (2022). https://doi.org/10.1007/s10854-022-08732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08732-6

Navigation