Skip to main content
Log in

Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, the use of ionizing radiation in various fields leads to an increased demand for shielding materials. This work aims to study the structural and radiation shielding properties of two groups of perovskite ceramics. Fourier transform infrared and X-ray diffraction were utilized to investigate current samples’ structure, and various radiation shielding parameters were determined to explore the current samples’ ability to absorb radiation within an energy range from 0.284 to 2.506 MeV using the Phy-X program. The Fourier transform infrared results revealed one vibration band for BaTiO3–ZrO2 located at 507 cm−1, two bands centered at 835 and 520 cm−1 for the BaTiO3-Mo sample, and five bands located at 435, 520, 539, 615, and 775 cm−1 for SrMnO3–ZnO and SrMnO3–TeO2. Simultaneously, the X-ray diffraction displays the hexagonal phase for SrMnO3 and the tetragonal phase for BaTiO3 samples. The BaTiO3-Mo sample has the highest density, packing density, and Poisson’s ratio compares with other samples. According to gamma shielding results, the SrMnO3–ZnO and BaTiO3–ZrO2 samples appear the lowest and highest absorption ability, respectively. On another side, the SrMnO3–TeO2 sample has the highest removal cross-section for fast neutrons. From obtained results, it can be concluded that the BaTiO3–ZrO2 sample has an excellent capacity to stop gamma-ray, while SrMnO3–TeO2 can be used to prevent neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Alaei, Introduction to health physics: fourth edition. Med. Phys. 35, 5959–5959 (2008). https://doi.org/10.1118/1.3021454

    Article  Google Scholar 

  2. B. Burak Alaylar, K. Aygün, G. Turhan, E. Karadayi, V.P.S. Akar, M.I. Singh, M.I. Sayyed, E. Pelit, A. Karabulut, M. Güllüce, Z. Turgut, M. Isaoglu, Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 184, 109471 (2021)

    Article  Google Scholar 

  3. J. Drobny, Ionizing Radiation and Polymers [Recurso Electrónico] (William Andrew, Estados Unidos, Washington, DC, 2012)

    Google Scholar 

  4. X. Mengge Dong, H. Xue, Z. Yang, Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 141, 239–244 (2017)

    Article  Google Scholar 

  5. S. Mengge Dong, X. Zhou, X. Xue, M.I. Feng, M.U. Sayyed, D.A. Khandaker, Bradley, The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 188, 109601 (2021)

    Article  Google Scholar 

  6. M. Sayyed, A. Ati, M. Mhareb et al., Novel tellurite glass (60-x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 for radiation shielding. J. Alloy. Compd. 844, 155668 (2020). doi:https://doi.org/10.1016/j.jallcom.2020.155668

    Article  CAS  Google Scholar 

  7. E. Waly, M. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306–310 (2015). doi:https://doi.org/10.1016/j.anucene.2015.05.011

    Article  CAS  Google Scholar 

  8. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)

    Article  Google Scholar 

  9. A. Abdalsalam, E. Şakar, K. Kaky et al., Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 168, 108537 (2020). doi:https://doi.org/10.1016/j.radphyschem.2019.108537

    Article  CAS  Google Scholar 

  10. M. Mhareb, Y. Alajerami, N. Dwaikat et al., Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nucl. Eng. Technol. 53, 949–959 (2021). https://doi.org/10.1016/j.net.2020.07.035

    Article  CAS  Google Scholar 

  11. M. Mhareb, Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A (2020). doi:https://doi.org/10.1007/s00339-019-3262-9

    Article  Google Scholar 

  12. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglug, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464 (2019)

    Article  Google Scholar 

  13. A. Temir, K.S. Zhumadilov, М Zdorovets. A. V, Kozlovskiy, A.V. Trukhanov, Study of the effect of doping CeO2 in TeO2–MoO–Bi2O3 ceramics on the phase composition, optical properties and shielding efficiency of gamma radiation. Opt. Mater. 115, 111037 (2021)

    Article  CAS  Google Scholar 

  14. M. Mhareb, Y. Slimani, Y. Alajerami et al., Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020). doi:https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  CAS  Google Scholar 

  15. M. Hamad, M. Mhareb, Y. Alajerami et al., Radiation shielding properties of Nd0.6Sr0.4Mn1 – yNiyO3 substitute with different concentrations of nickle. Radiat. Phys. Chem. 174, 108920 (2020). doi:https://doi.org/10.1016/j.radphyschem.2020.108920

    Article  CAS  Google Scholar 

  16. R. Hamad, M. Mhareb, Y. Alajerami et al., A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations. J. Alloy. Compd. 858, 157636 (2021). doi:https://doi.org/10.1016/j.jallcom.2020.157636

    Article  CAS  Google Scholar 

  17. B. Alım, A comprehensive study on radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P alloys. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3442-7

    Article  Google Scholar 

  18. A.L. Kozlovskiy, D.I. Shlimas, M.V. Zdorovets, Synthesis, structural properties and shielding efficiency of glasses based on TeO 2-(1-x) ZnO-xSm 2 O 3. J. Mater. Sci. 32(9), 12111–12120 (2021)

    CAS  Google Scholar 

  19. A. Temir, K. Zhumadilov, М Zdorovets, A. Kozlovskiy, A. Trukhanov, Study of gamma radiation shielding efficiency with radiation-resistant Bi2O3-TeO2-WO3 ceramics. Solid State Sci. 115, 106604 (2021)

    Article  CAS  Google Scholar 

  20. A.L. Kozlovskiy, M.V. Zdorovets, Effect of doping of Ce4+/3 + on optical, strength and shielding properties of (0.5-x) TeO2-0.25 MoO-0.25 Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263, 124444 (2021)

    Article  CAS  Google Scholar 

  21. A. Kozlovskiy, М Zdorovets, K.K. V, Kadyrzhanov, Study of physical, optical properties and gamma radiation shielding efficiency of 0.5Bi2O3-(0.5-x)WO3-xPbO glasses. Opt. Mater. 114, 111005 (2021)

    Article  CAS  Google Scholar 

  22. C. Chandler, C. Roger, M. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993). doi:https://doi.org/10.1021/cr00019a015

    Article  CAS  Google Scholar 

  23. M. Peña, J. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001). https://doi.org/10.1021/cr980129f

    Article  CAS  Google Scholar 

  24. A. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3–26 (2000). https://doi.org/10.1007/s100190000062

    Article  CAS  Google Scholar 

  25. A. Haruna, I. Abdulkadir, S.O. Idris, Synthesis, characterization and photocatalytic properties of Bi0. 85 – XMXBa0. 15FeO3 (M = Na and K, X = 0, 0.1) perovskite-like nanoparticles using the sol-gel method. J. King Saud Univ.-Sci. 32(1), 896–903 (2020)

    Article  Google Scholar 

  26. A. Haruna, I. Abdulkadir, S.O. Idris, Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 6(1), e03237 (2020)

    Article  CAS  Google Scholar 

  27. A. Haruna, I. Abdulkadir, S.O. Idris, Effect of annealing temperature on the synthesis and photocatalytic properties of Bi 0.65 K 0.2 Ba 0.15 FeO 3 perovskite-like nanoparticle synthesized by sol-gel method. Beni-Suef Univ. J. Basic Appl. Sci. 9(1), 1–8 (2020)

    Article  Google Scholar 

  28. A. Haruna, I. Abdulkadir, S.O. Idris, Visible light induced photodegradation of methylene blue in sodium doped bismuth barium ferrite nanoparticle synthesized by sol-gel method. Avicenna J. Environm. Health Eng. 5(2), 120–126 (2018)

    Article  CAS  Google Scholar 

  29. A. Demirörs, A. Imhof, BaTiO3, SrTiO3, CaTiO3, and BaxSr1 – xTiO3Particles: a general approach for monodisperse colloidal Perovskites. Chem. Mater. 21, 3002–3007 (2009). https://doi.org/10.1021/cm900693r

    Article  CAS  Google Scholar 

  30. T. Lee, I. Aksay, Hierarchical structure–ferroelectricity relationships of barium titanate particles. Cryst. Growth Des. 1, 401–419 (2001). https://doi.org/10.1021/cg010012b

    Article  CAS  Google Scholar 

  31. Z. Chen, Y. Chen, Y. Jiang, DFT study on ferroelectricity of BaTiO3. J. Phys. Chem. B 105, 5766–5771 (2001). https://doi.org/10.1021/jp0032558

    Article  CAS  Google Scholar 

  32. J. Moreno, J. Dominguez, A. Montoya et al., Synthesis and characterization of MTiO3(M = Mg, Ca, Sr, Ba) sol-gel. J. Mater. Chem. 5, 509 (1995). doi:https://doi.org/10.1039/jm9950500509

    Article  CAS  Google Scholar 

  33. J. Bai, J. Yang, W. Dong, Y. Zhang, W. Bai, X. Tang, Structural and magnetic properties of perovskite SrMnO3 thin films grown by molecular beam epitaxy. Thin Solid Films 644, 57–64 (2017)

    Article  CAS  Google Scholar 

  34. A. Sacchetti, M. Baldini, F. Crispoldi et al., Temperature dependence of the optical phonons inSrMnO3manganite: evidence of a low-temperature structural transition in the hexagonal compound. Phys. Rev. B. (2005). https://doi.org/10.1103/physrevb.72.172407

    Article  Google Scholar 

  35. J. Heiras, E. Pichardo, A. Mahmood et al., Thermochromism in (Ba,Sr)-Mn oxides. J. Phys. Chem. Solids 63, 591–595 (2002). doi:https://doi.org/10.1016/s0022-3697(01)00198-6

    Article  CAS  Google Scholar 

  36. H. Zhu, X. Xu, X. Zhong, Fabrication and characterization of hexagonal SrMnO3 nanofibers by electrospinning. In MATEC Web of Conferences, vol. 67 (2016), p. 06093

  37. T. Negas, The SrMnO3 – XMn3O4 system. J. Solid State Chem. 7(1), 85–88 (1973)

    Article  CAS  Google Scholar 

  38. Y. Syono, S.I. Akimoto, K. Kohn, Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J. Phys. Soc. Jpn. 26(4), 993–999 (1969)

    Article  CAS  Google Scholar 

  39. M. Hamad, Y. Maswadeh, K. Ziq, Effects of Ni substitutions on the critical behaviors in Nd0.6Sr0.4Mn1 – xNixO3 manganite. J. Magn. Magn. Mater. 491, 165609 (2019). doi:https://doi.org/10.1016/j.jmmm.2019.165609

    Article  CAS  Google Scholar 

  40. M. Hamad, I. Abdel-Latif, K. Ziq, Effect of cobalt doping in Nd1-xSrxMn1-yCoyO3. In Journal of Physics: Conference Series, vol. 869 (2017), p. 012032. https://doi.org/10.1088/1742-6596/869/1/012032

  41. E. Şakar, Ö. Özpolat, B. Alım et al., Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  42. L. Pauling, The Nature of the Chemical Bond: And the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, NY, 1939), p. 450

    Google Scholar 

  43. C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochim. Acta (2017). doi:https://doi.org/10.1515/ract-2016-2690

    Article  Google Scholar 

  44. M. Mhareb, M. Sayyed, Y. Alajerami et al.,  Structural and radiation shielding features for a new series of borate glass samples: part I. Eur. Phys. J. Plus. 136, 1–15 (2021). https://doi.org/10.1140/epjp/s13360-020-00984-7

  45. Y. Slimani, A. Selmi, E. Hannachi et al., Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  CAS  Google Scholar 

  46. Y. Slimani, A. Selmi, E. Hannachi et al., Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  47. S. Abbas, S. Atiq, S. Riaz et al., Thermally assisted electro-active regions in SrMnO 3 ceramics. Mater. Chem. Phys. 200, 128–135 (2017). doi:https://doi.org/10.1016/j.matchemphys.2017.07.039

    Article  CAS  Google Scholar 

  48. G. George, S. Jackson, C. Luo et al., Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram. Int. 44, 21982–21992 (2018). doi:https://doi.org/10.1016/j.ceramint.2018.08.313

    Article  CAS  Google Scholar 

  49. P. Jena, N. Nallamuthu, K. Hari Prasad et al., Structural characterization and electrical conductivity studies of BaMoO4 nanofibers prepared by sol–gel and electrospinning techniques. J. Sol-Gel. Sci. Technol. 72, 480–489 (2014). doi:https://doi.org/10.1007/s10971-014-3460-z

    Article  CAS  Google Scholar 

  50. S. Demirel, E. Oz, S. Altin et al., Structural, magnetic, electrical and electrochemical properties of SrCoO2.5, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram. Int. 43, 14818–14826 (2017). doi:https://doi.org/10.1016/j.ceramint.2017.07.230

    Article  CAS  Google Scholar 

  51. S. Gholamrezaei, M. Amiri, O. Amiri et al., Ultrasound-accelerated synthesis of uniform SrMnO3 nanoparticles as water-oxidizing catalysts for water splitting systems. Ultrason. Sonochem. 62, 104899 (2020). https://doi.org/10.1016/j.ultsonch.2019.104899

    Article  CAS  Google Scholar 

  52. H. Sidek, S. Rosmawati, Z. Talib et al., Synthesis and optical properties of ZnO-TeO2 glass system. Am. J. Appl. Sci. 6, 1489–1494 (2009). https://doi.org/10.3844/ajassp.2009.1489.1494

    Article  CAS  Google Scholar 

  53. G.J. Hine, The effective atomic numbers of materials for various gamma ray interactions. Phys. Rev. 85, 725 (1952)

    CAS  Google Scholar 

  54. I.O. Olarinoye, Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies. Res. J. Chem. Sci. 1(2), 64–69 (2011)

  55. Y. Rammah, I. Olarinoye, F. El-Agawany et al., Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. 46, 25440–25452 (2020). doi:https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  CAS  Google Scholar 

  56. I.O. Olarinoye, Ambient dose buildup factor, in Computational Methods in Nuclear Radiation Shielding and Dosimetry. ed. by K.S. Mann, V.P. Singh (Nova Science Publishers, New York, 2020), pp. 87–112

    Google Scholar 

  57. I.O. Olarinoye, Photon buildup factors for tissues and phantom materials for penetration depth up to 100 mfp. J. Nucl. Res. Dev. 13, 57–67 (2017)

    Google Scholar 

  58. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors. Nucl. Sci. Eng. 94, 24–35 (1986). https://doi.org/10.13182/nse86-a17113

    Article  CAS  Google Scholar 

  59. K. Mann, Measurement of exposure buildup factors: the influence of scattered photons on gamma-ray attenuation coefficients. Nuclear instruments and methods in physics research section a: accelerators, spectrometers. Detect. Assoc. Equip. 877, 1–8 (2018). https://doi.org/10.1016/j.nima.2017.08.047

    Article  CAS  Google Scholar 

  60. M. Kurudirek, Photon buildup factors in some dosimetric materials for heterogeneous radiation sources. Radiat. Environ. Biophys. 53, 175–185 (2013). doi:https://doi.org/10.1007/s00411-013-0502-9

    Article  CAS  Google Scholar 

  61. Y. Alajerami, D. Drabold, M. Mhareb et al., Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46, 12718–12726 (2020). doi:https://doi.org/10.1016/j.ceramint.2020.02.039

    Article  CAS  Google Scholar 

  62. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). doi:https://doi.org/10.1016/s0306-4549(97)00003-0

    Article  CAS  Google Scholar 

  63. V. Singh, N. Badiger, Investigation of gamma and neutron shielding parameters for borate glasses containing NiO and PbO. Phys. Res. Int. 2014, 1–7 (2014). https://doi.org/10.1155/2014/954958

    Article  Google Scholar 

  64. M. Sayyed, B. El-bashir, A. Alhuthali et al., Gamma radiation shielding and structural features for barium strontium boro-tellurite glass modified with various concentrations of molybdenum oxide. J. Non-Cryst. Solids 559, 120658 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial supports from the Deanship of Scientific Research at Imam Abdulrahman Bin Faisal University (IAU, Dammam - Saudi Arabia) through the Grant No. 2020-164-IRMC.

Funding

Author from KFUPM acknowledges the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals (KFUPM) for supporting this work under Project No. SR191008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Slimani or M. H. A. Mhareb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimani, Y., Hamad, M.K., Olarinoye, I.O. et al. Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. J Mater Sci: Mater Electron 32, 20867–20881 (2021). https://doi.org/10.1007/s10854-021-06603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06603-0

Navigation