Skip to main content
Log in

Radiation Shielding, EPR, and TL Mechanism in Cr3+: Ba(La)2SiO6 Glass Ceramics

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current research aimed to prepare the Cr2O3 doped Ba(La)2SiO6 glasses and planned for elastic, radiation shielding, electron paramagnetic resonance, and thermoluminescence characterization. The X-Ray diffraction reports reveal the glassy behavior of the pure glass. At the same time, the other test samples show ceramic behavior. Mechanical properties of test samples reveal the range of the microhardness. DTA studies reveal the values of thermal studies of the test samples. After that, the glass-ceramics were tested for radiation shielding properties. The values of mass attenuation coefficient and radiation protection efficiency of the glasses are measured and compared with values obtained with the help of standard photon shielding and dosimetry software. The studies indicate that the glasses developed are capable of radiation shielding. The electron paramagnetic resonance reports suggest high dipole-dipole super-exchange interaction and rhombohedral distortion within the glasses.

Furthermore, we have tested the glasses for radiation shielding properties. Upon 50 kGy, γ - irradiation, the thermoluminescence properties of the glasses are reported. The results were exciting and revealed that the resource developed is thermoluminescent at low activation energies. Additionally, the electron paramagnetic resonance and thermoluminescence properties obtained for the glasses are highly interlinked. In this view, to initiate the comprehensive link between electron paramagnetic resonance and thermoluminescence phenomenon, we have annealed the glasses under 0 to 300 °C of temperature and upon the 0 to 50 kGy, γ - irradiation dose level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data will be shared based on the request and genuine reason with justification.

References

  1. He J-J, Wu S-Y, Zhang L-J, Xu Y-Q, Ding C-C (2016) Theoretical studies of the concentration dependences of g factor and d-d transition band for Cr3+ in CdO–SrO–B2O3–SiO2 glasses. J Non-Crystal Solids 437:58–63 ISSN 0022-3093

    Article  CAS  Google Scholar 

  2. Gaafar MS, Marzouk SY, Mahmoud IS (2021) Role of dysprosium on some acoustic and physical properties of PbO-B2O3-SiO2 glasses. Results Phys 22:103944, ISSN 2211-3797. https://doi.org/10.1016/j.rinp.2021.103944

    Article  Google Scholar 

  3. Pacaud F, Salanne M, Charpentier T, Cormier L, Delaye J-M (2018) Structural study of Na2O-B2O3-SiO2-La2O3 glasses from molecular simulations using a polarizable force field. J Non-Crystal Solids 499:371–379, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2018.07.049

    Article  CAS  Google Scholar 

  4. Park B, Li H, Corrales LR (2002) Molecular dynamics simulation of La2O3–Na2O–SiO2 glasses. I. The structural role of La3+ cations. Journal of Non-Crystalline Solids 297(2–3):220–238, ISSN 0022-3093. https://doi.org/10.1016/S0022-3093(01)00935-8

    Article  CAS  Google Scholar 

  5. Masai H (2018) Go, Okada, Noriaki Kawaguchi, Takayuki Yanagida, photoluminescence and X-ray-induced scintillation of BaO-TiO2-SiO2 glasses the glass-ceramics. J Non-Crystal Solids 501:131–135, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2017.11.026

    Article  CAS  Google Scholar 

  6. Rai M, Mountjoy G (2014) Molecular dynamics modeling of the structure of barium silicate glasses BaO–SiO2. J Non-Crystal Solids 401:159–163, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2013.12.026

    Article  CAS  Google Scholar 

  7. Ravi Kumar G, Rao MC (2019) Structural and photoluminescence investigations of Cr3+ mixed Li2O—Bi2O3—ZrO2—SiO2 glass-ceramics for optoelectronic device application. Optik 181:721–731, ISSN 0030-4026. https://doi.org/10.1016/j.ijleo.2018.12.110

    Article  CAS  Google Scholar 

  8. El-Damrawi G, Abdelghany AM, Oraby AH, Marshal MA (2020) Structural and optical absorption studies on Cr2O3 doped SrO-P2O5 glasses. Spectro Chim Acta A: Mol Biomol Spectrosc 228:117840, ISSN 1386-1425. https://doi.org/10.1016/j.saa.2019.117840

    Article  CAS  Google Scholar 

  9. Liu T, Li C, Huang Q, Liu C, Lin C, Zhang Q, Luo Z, Zhu L, Anxian L (2020) Characterization of structure and properties of MgO-Al2O3-SiO2-B2O3-Cr2O3 glass-ceramics. J Non-Crystal Solids 543:120154, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2020.120154

    Article  CAS  Google Scholar 

  10. Wang J-S, Shen F-H (2012) The development of SiO2 resistant Cr-doped glass ceramics for high Cr3+ emission. J Non-Cryst Solids 358(2):246–251, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2011.09.022

    Article  CAS  Google Scholar 

  11. Mirhadi B, Mehdikhani B (2011) Crystallization behavior and microstructure of (CaO·ZrO2·SiO2)–Cr2O3 based glasses, journal of non-crystalline solids, volume 357. Issues 22–23:3711–3716, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2011.07.040

    Article  CAS  Google Scholar 

  12. Guntu RK (2019) Elastic, thermoluminescence and dielectric characterization of lead-antimony silicate glass composites doped by small concentrations of Cr2O3. Bull Mater Sci 42:214, ISSN 0250-4707. https://doi.org/10.1007/s12034-019-1892-3

    Article  CAS  Google Scholar 

  13. Pintea S, Rednic V, Mărginean P, Aldea N, Hu T, Wu Z, Neumann M, Matei F (2009) Crystalline and electronic structure of Ni nanoclusters supported on Al2O3 and Cr2O3 investigated by XRD, XAS and XPS methods. Superlattice Microst 46(1–2):130–136, ISSN 0749-6036. https://doi.org/10.1016/j.spmi.2009.01.003

    Article  CAS  Google Scholar 

  14. Ravi Kumar G, Gopi Krishna M, Rao MC (2018) Cr3+ doped NaF–ZrO2–B2O3–SiO2 glass-ceramic materials for optoelectronic device application. Optik 173:78–87, ISSN 0030-4026. https://doi.org/10.1016/j.ijleo.2018.07.114

    Article  CAS  Google Scholar 

  15. Todorova TZ, Boyd D (2021) Thermal and elastic properties of binary and ternary high borate glass networks from first-principles methods. J Non-Crystal Solids 571:121059, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2021.121059

    Article  CAS  Google Scholar 

  16. Guntu RK, Srinivasa Rao C (2020) Influence of Bi2O3, Sb2O3, and Y2O3 on optical properties of Er2O3-doped CaO–P2O5–B2O3 glasses. Bull Mater Sci e:71, ISSN 0250-4707. https://doi.org/10.1007/s12034-019-1996-9

    Article  CAS  Google Scholar 

  17. Abd-Elnaiem AM, Abbady G (2020) A thermal analysis study of melt-quenched Zn5Se95 chalcogenide glass. Journal of Alloys and Compounds 818:152880, ISSN 0925-8388. https://doi.org/10.1016/j.jallcom.2019.152880

    Article  CAS  Google Scholar 

  18. Wakasugi T, Kadoguchi T, Ota R (2001) Evaluation of the number density of nuclei in Li2O·2SiO2 glass by DTA method. J Non-Cryst Solids 290(1):64–72, ISSN 0022-3093. https://doi.org/10.1016/S0022-3093(01)00718-9

    Article  CAS  Google Scholar 

  19. Ibrahim AM, Hammad AH, Abdelghany AM, Rabie GO (2018) Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. J Non-Crystal Solids 495:67–74, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2018.05.015

    Article  CAS  Google Scholar 

  20. Hisam R, Yahya AK (2019) Elastic moduli, optical and electrical properties of mixed electronic-ionic 30Li2O-4MoO3-(66-x)TeO2-xV2O5 tellurite glass system. Results Phys 13:102219, ISSN 2211-3797. https://doi.org/10.1016/j.rinp.2019.102219

    Article  Google Scholar 

  21. Vijay S, Chakradhar RPS, Rao JL, S.H. (2014) Kim, EPR and luminescence studies of Cr3+ doped MgSrAl10O17 phosphor synthesized by a low-temperature solution combustion route. J Lumin 154:328–333, ISSN 0022-2313. https://doi.org/10.1016/j.jlumin.2014.03.035

    Article  CAS  Google Scholar 

  22. Molla AR, Kesavulu CR, Chakradhar RPS, Tarafder A, Mohanty SK, Rao JL, Karmakar B, Biswas SK (2014) Microstructure, mechanical, thermal, EPR, and optical properties of MgAl2O4:Cr3+ spinel glass-ceramic nanocomposites. J Alloys Compd 583:498–509, ISSN 0925-8388. https://doi.org/10.1016/j.jallcom.2013.08.122

    Article  CAS  Google Scholar 

  23. De Vicente FS, Santos FA, Simões BS, Dias ST, Siu Li M (2014) EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses. Opt Mater 38:119–125, ISSN 0925-3467. https://doi.org/10.1016/j.optmat.2014.10.012

    Article  CAS  Google Scholar 

  24. Premkumar HB, Sunitha DV, Nagabhushana H, Sharma SC, Nagabhushana BM, Rao JL, Gupta K, Chakradhar RPS (2012) YAlO3:Cr3+ nano phosphor: synthesis, photoluminescence, EPR, dosimetric studies. Spectrochim Acta A: Mol Biomol Spectrosc 96:154–162, ISSN 1386–1425. https://doi.org/10.1016/j.saa.2012.04.028

    Article  CAS  Google Scholar 

  25. Susoy G, Altunsoy Guclu EE, Ozge Kilicoglu M, Kamislioglu MS, Al-Buriahi MM, Abuzaid HOT (2020) The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Mater Chem Phys 242:122481, ISSN 0254-0584. https://doi.org/10.1016/j.matchemphys.2019.122481

    Article  CAS  Google Scholar 

  26. Al-Buriahi MS, Alajerami YSM, Abouhaswa AS (2020) Amani Alalawi, Tanin Nutaro, Baris Tonguc, effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J Non-Crystal Solids 544:120171, ISSN 0022-3093. https://doi.org/10.1016/j.jnoncrysol.2020.120171

    Article  CAS  Google Scholar 

  27. Sayyed MI, Tekin HO, Agar O (2019) Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: the role of TeO2. Radiat Phys Chem 163:58–66, ISSN 0969-806X. https://doi.org/10.1016/j.radphyschem.2019.05.012

    Article  CAS  Google Scholar 

  28. El-Damrawi G, Abdelghany AM, Madshal MA AC conductivity and dielectric properties of Cr2O3 doped SrO–P2O5 glasses. Phys B: Condens Matter 618:413184, ISSN 0921-4526. https://doi.org/10.1016/j.physb.2021.413184

  29. Prabhu NS, Sharmila K, Kumaraswamy S et al (2021) An examination of the radiation-induced defects and thermoluminescence characteristics of Sm2O3 doped BaO–ZnO–LiF–B2O3 glass system for the γ-dosimetry application. Opt Mater 118:111252, ISSN 0925–3467. https://doi.org/10.1016/j.optmat.2021.111252

    Article  CAS  Google Scholar 

  30. Prabhu NS, Hegde V, Sayyed MI, Agar O, Kamath SD (2019) Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Mater Chem Phys 230:267–276, ISSN 0254-0584. https://doi.org/10.1016/j.matchemphys.2019.03.074

    Article  CAS  Google Scholar 

  31. Guntu RK (2020) Nd2O3 Influenced Al2O3 & Sb2O3 Functional PbO-SiO2 Glass, Materials, 1.06 μm Photonic Resource. Mater Sci Eng: B 262:114784, ISSN 0921-5107. https://doi.org/10.1016/j.mseb.2020.114784

    Article  CAS  Google Scholar 

  32. Debnath R, Chaudhuri AK, Luthra JM, Vaijapurkar SG, Bhatnagar PK (1995) High-temperature thermoluminescence of γ-irradiated copper activated silica glass and its application to dosimetry. J Lumin 65(5):279–282, ISSN 0022-2313. https://doi.org/10.1016/0e022-2313(95)00076-3

    Article  CAS  Google Scholar 

  33. Anishia SR, Jose MT, Annalakshmi O, Ponnusamy V, Ramasamy V (2010) Dosimetric properties of rare-earth-doped LiCaBO3 thermoluminescence phosphors. J Lumin 130(10):1834–1840. https://doi.org/10.1016/j.jlumin.2010.04.019

    Article  CAS  Google Scholar 

  34. Laopaiboon R, Bootjomchai C (2015) Physical properties and thermoluminescence of glasses designed for radiation dosimetry measurements. Mater Des 80:20–27, ISSN 0261-3069. https://doi.org/10.1016/j.matdes.2015.05.002

    Article  CAS  Google Scholar 

  35. Debnath R, Chaudhuri AK, Luthra JM, Vaijapurkar SG, Bhatnagar PK (1995) High-temperature thermoluminescence of γ-irradiated copper activated silica glass and its application to dosimetry. J Lumin 65(5):279–282, ISSN 0022-2313. https://doi.org/10.1016/0022-2313(95)00076-3

    Article  CAS  Google Scholar 

  36. Kesavulu CR, Muralidhara RS, Rao JL, Anavekar RV, Chakradhar RPS (2009) EPR and photoluminescence studies on lithium-potassium borophosphate glasses doped with Mn2+ ions. J Alloys Compd 486(1–2):46–50. https://doi.org/10.1016/j.jallcom.2009.07.040

    Article  CAS  Google Scholar 

  37. Bhaskar Sanyal M, Goswami SS, Prakasan V, Krishnan M, Ghosh SK (2019) Thermoluminescence and electron paramagnetic resonance study on rare earth/transition metal-doped lithium borate glasses for dosimetry applications. J Lumin 216:116725. https://doi.org/10.1016/j.jlumin.2019.116725

    Article  CAS  Google Scholar 

  38. Cano NF, Rao TKG, Ayala-Arenas JS, Gonzales-Lorenzo CD, Oliveira LM, Watanabe S (2019) TL in green tourmaline: Study of the centers responsible for the TL emission by EPR analysis. Journal of Luminescence 205:324–328. https://doi.org/10.1016/j.jlumin.2018.09.034

    Article  CAS  Google Scholar 

  39. Guntu RK (2021) EPR - TL Correlation, In Radiation Shielding Ba(10-x)MnxLa30Si60 Glasses. J Mol Struct 1248:131533. https://doi.org/10.1016/j.molstruc.2021.131533

    Article  CAS  Google Scholar 

  40. Le Gac A, Boizot B, Jégou C, Peuget S (2017) Aluminosilicate glasses structure under electron irradiation: an EPR study. Nucl Instrum Methods Phys Res, Sect B 407:203–209. https://doi.org/10.1016/j.nimb.2017.06.025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Sreenidhi Institute of Science and Technology, management, for continuous moral support and some financial assistance, providing internal research and development projects to the faculty.

Funding

Some of the work was completed under the institute’s internal research and development scheme. Authors also thank UGC Project [MRP-7029/16(SERO/UGC)] for some assistance by means of chemicals and glassware.

Author information

Authors and Affiliations

Authors

Contributions

K. Veerabhadra Rao – conceptualization, methodology, analysis of results, and report drafting.

M. Madhu – helped at characterization of samples.

Padala Ashok – helped at development of samples and analysis of structural results.

G. Anil Kumar – helped at report correction, and communication.

Ravi Kumar Guntu – helped at development of samples, analysis of results, report correction, and communication.

Corresponding authors

Correspondence to G. Anil Kumar or Ravi Kumar Guntu.

Ethics declarations

Ethics Approval

The manuscript has been written as per journal ethical guidelines.

Consent to Participate

Yes, declare.

Consent for Publication

Yes, declare.

Conflict of Interest

Declare none.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.V., Madhu, M., Ashok, P. et al. Radiation Shielding, EPR, and TL Mechanism in Cr3+: Ba(La)2SiO6 Glass Ceramics. Silicon 14, 9887–9899 (2022). https://doi.org/10.1007/s12633-022-01731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01731-6

Keywords

Navigation