Skip to main content

Advertisement

Log in

Effects of Terbium Doping on Structural, Optical and Photocatalytic Properties of ZnO Nanopowder Prepared by Solid-State Reaction

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Terbium (Tb) doped zinc oxide (ZnO) nanopowders with different Tb concentrations (3%, 5% and 7%) were synthesized via a solid-state reaction method and investigated by using thermogravimetric analysis, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared ray spectroscopy. XRD results showed that the nanopowders have hexagonal wurtzite phase with grain size in the range of 20–56 nm with high purity. The photocatalytic efficiency tested on the degradation of methylene blue dye by hydrogen peroxide under natural UV–Vis irradiation at pH ~ 6.4 in 30 min achieved an increasing from about 3.6 to 48%. The optical properties denoted enhancement of its optical absorption in visible range from about 35 to 72%, a decreasing of its bandgap energy from 3.215 to 3.188 eV and intense photoluminescence emission under ultraviolet excitation in the green and blue spectral range whose wave lengths can be adjusted by varying the Tb doping percentage.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B. 102, 5566–5572 (1998)

    CAS  Google Scholar 

  2. L. Zhang, G. Meng, F. Phillipp, Synthesis and characterization of nanowires and nanocables. Mater. Sci. Eng. A 286, 34–38 (2000)

    Google Scholar 

  3. J.-H. Liu, X. Ma, Y. Xu, H. Tang, S.-T. Yang, Y.-F. Yang, D.-D. Kang, H. Wang, Y. Liu, Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicol. Res. 6, 134–143 (2017)

    CAS  Google Scholar 

  4. S. Chu, M. Morshed, L. Li, J. Huang, J. Liu, Smooth surface, low electron concentration, and high mobility ZnO films on c-plane sapphire. J. Cryst. Growth 325, 36–40 (2011)

    CAS  Google Scholar 

  5. T.-Y. Lai, T.-H. Fang, Y.-J. Hsiao, E.-Y. Kuo, Structure and characteristics of electrospun ZnO nanofibers for gas sensing. Curr. Nanosci. 16(2), 187–195 (2020)

    CAS  Google Scholar 

  6. S.-I. Senatova, A.-R. Mandal, F.-S. Senatov, N.-Y. Anisimova, S.-E. Kondakov, P.-K. Samanta, D.-V. Kuznetsov, Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens. Curr. Nanosci. 11, 3 (2015)

    Google Scholar 

  7. A. Janotti, C.-G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Google Scholar 

  8. L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. J. Phys. Chem. C 114(21), 9651–9658 (2010)

    CAS  Google Scholar 

  9. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L.E.L. Mir, Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater. Chem. Phys. 10, 5194 (2020)

    Google Scholar 

  10. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)

    CAS  PubMed  Google Scholar 

  11. J. Huang, Y. Zhigang, Q. Zheng, Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 4, 3861–3877 (2011)

    CAS  Google Scholar 

  12. R. Kandulna, R.-B. Choudhary, P. Maji, Ag-doped ZnO reinforced polymeric Ag:ZnO/PMMA nanocomposites as electron transporting layer for OLED application. J. Inorg. Organomet. Polym. Mater. 27, 1760–1769 (2017)

    CAS  Google Scholar 

  13. P. Nakarungsee, S. Srirattanapibul, C. Issro, I.-M. Tang, S. Thongmee, High performance Cr doped ZnO by UV for NH3 gas sensor. Sens Actuators A 314, 112230 (2020)

    CAS  Google Scholar 

  14. R. Mohammadi, M. Feyzi, M. Joshaghani, Synthesis of ZnO-magnetic/ZSM-5 and its application for removal of disperse Blue 56 from contaminated water. Chem. Eng. Process. 153, 107969 (2020)

    CAS  Google Scholar 

  15. A. Mondal, P.-B. Chouke, V. Sonkusre, T. Lambat, A.-A. Abdala, S. Mondal, R.-G. Chaudhary, Ni-doped ZnO nanocrystalline material for electrocatalytic oxygen reduction reaction. Mater. Today Proc. 139, 244 (2020)

    Google Scholar 

  16. G. Lee, T. Kawazoe, M. Ohtsu, Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun. 124, 163–165 (2002)

    CAS  Google Scholar 

  17. Y. Caglar, K. Gorgun, S. Aksoy, Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis. Spectrochim. Acta 138, 617–622 (2015)

    CAS  Google Scholar 

  18. Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Appl. Phys. A 92, 275–278 (2008)

    CAS  Google Scholar 

  19. V. Prasad, C. D’Souza, D. Yadav, A. Shaikh, N. Vigneshwaran, Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectroc. Acta A 65, 173–178 (2006)

    Google Scholar 

  20. L. Spanhel, M.-A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826–2833 (1991)

    CAS  Google Scholar 

  21. W. Chen, C. Yao, J. Gan, K. Jia, Z. Hu, J. Lin, N. Xu, J. Sun, J. Wu, ZnO colloids and ZnO nanoparticles synthesized by pulsed laser ablation of zinc powders in water. Mater. Sci. Semicond. Process. 109, 104918 (2020)

    CAS  Google Scholar 

  22. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)

    CAS  Google Scholar 

  23. K. Singh, J. Singh, M. Rawat, Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl. Sci. 1, 624 (2019)

    Google Scholar 

  24. K. Raja, P. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrosc Acta A 131, 183–188 (2014)

    CAS  Google Scholar 

  25. N.-H. Hashim, S. Subramani, M. Devarajan, A.R. Ibrahim, Structural and surface characterization of undoped ZnO and Cu doped ZnO using sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 27, 3520–3530 (2016)

    CAS  Google Scholar 

  26. L. Chen, J. Zhang, X. Zhang, F. Liu, X. Wang, Optical properties of trivalent europium doped ZnO: Zn phosphor under indirect excitation of near-UV light. Opt. Express 16, 11795–11801 (2008)

    CAS  PubMed  Google Scholar 

  27. P. Pradyumnan, N. Divya, P. Aparna, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Chem. Eng. Mater. Sci. 4, 79–88 (2016)

    Google Scholar 

  28. W. Zou, C. Ge, G. Venkataiah, H. Su, H. Hsu, J. Huang, X. Liu, F. Zhang, Y. Du, Ferromagnetism in Tb doped ZnO nanocrystalline films. J. Appl. Phys. 111(11), 541–552 (2012)

    Google Scholar 

  29. L. Yang, Y. Li, Y. Xiao, C. Ye, L. Zhang, Synthesis of Tb3+-doped ZnO nanowire arrays through a facile sol–gel template approach. Chem. Lett. 34, 828–829 (2007)

    Google Scholar 

  30. W. Thoburn, S. Legvold, F. Spedding, Magnetic properties of terbium metal. Phys. Rev. 112(56), 828–829 (1958)

    Google Scholar 

  31. G.-S. Lotey, J. Singh, N. Verma, Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. Mater. J. Sci. Mater. Electron. 24, 3611–3616 (2013)

    CAS  Google Scholar 

  32. G. Wakefield, H. Keron, P. Dobson, J. Hutchison, Structural and optical properties of terbium oxide nanoparticles. Phys. Chem. J. Solids 60, 503–508 (1999)

    CAS  Google Scholar 

  33. M. Rekaby, Photoluminescence and magnetic properties of undoped and (Mn, Co) co-doped ZnO nanoparticles. Curr. Nanosci. 15, 1–12 (2020)

    Google Scholar 

  34. B. Poornaprakash, U. Chalapathi, S.-H. Park, Structural and magnetic properties of ZnS:Tb3+ nanoparticles. J. Mater. Sci. Mater. Electron. 28, 3672–3677 (2017)

    CAS  Google Scholar 

  35. N. Aggarwal, A. Vasishth, K. Kaur, N.-K. Verma, Investigation of optical, electrical and magnetic properties of Tb-doped ZnO nanorods. J. Mater. Sci. Mater. Electron. 30, 4807–4812 (2019)

    CAS  Google Scholar 

  36. L.-F. Koao, B.-F. Dejene, H.-C. Swart, S.-V. Motloung, T.-E. Motaung, S.-P. Hlangothi, Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method. Adv. Mater. Lett. 7(7), 529–535 (2016)

    CAS  Google Scholar 

  37. M. Shkir, K.-V. Chandekar, B.-M. Alshehri, A. Khan, S. Al-Faify, M.-S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2020)

    CAS  Google Scholar 

  38. A. Azamm, F. Ahmed, N. Arshi, M. Chaman, A. Naqvi, Formation and characterization of ZnO nanopowder synthesized by sol–gel method. J. Alloys Compd. 496, 503–508 (2010)

    Google Scholar 

  39. M. Khatamian, A. Khandar, B. Divband, M. Haghighi, S. Ebrahimiasl, Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. A 365, 120–127 (2012)

    CAS  Google Scholar 

  40. X. Teng, H. Fan, S. Pan, C. Ye, G. Li, Influence of annealing on the structural and optical properties of ZnO: Tb thin films. J. Appl. Phys. 100, 053507 (2006)

    Google Scholar 

  41. S. Pati, P. Banerji, S. Majumder, Properties of indium doped nanocrystalline ZnO thin films and their enhanced gas sensing performance. RSC Adv. 5, 61230–61238 (2015)

    CAS  Google Scholar 

  42. P. Liu, Y. Liang, H. Li, J. Xiao, T. He, G. Yang, Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv. 3, 022127 (2013)

    Google Scholar 

  43. A.L. Al-Otaibi, T. Ghrib, M.A. Alharbi, R. Hamdi, I. Massoudi, Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts. Chem. Phys. 525, 110410 (2019)

    CAS  Google Scholar 

  44. P. Giri, S. Bhattacharyya, D.-K. Singh, R. Kesavamoorthy, B. Panigrahi, K. Nair, Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys. 102, 093515 (2007)

    Google Scholar 

  45. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. Sin. Engl. Lett. 1, 22–31 (1953)

    CAS  Google Scholar 

  46. L. Arda, The effects of Tb doped ZnO nanorod: an EPR study. J. Magn. Magn. Mater. 475, 493–501 (2019)

    CAS  Google Scholar 

  47. P.-P. Pal, J. Manam, Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods. Mater. Sci. Eng. B 178, 400–408 (2013)

    CAS  Google Scholar 

  48. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th edn. (Willey, New York, 2008), pp. 13–168

    Google Scholar 

  49. O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 32, 201–210 (2015)

    CAS  Google Scholar 

  50. I. Massoudi, A. Rebey, Analysis of in situ thin films epitaxy by reflectance spectroscopy: effect of growth parameters. Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.05.026

    Article  Google Scholar 

  51. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.-K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.-S. Aanand, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: Synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    CAS  Google Scholar 

  52. S. Anandan, S. Muthukumaran, Influence of Yttrium on optical; structural and photoluminescence properties of ZnO nanopowders by sol–gel method. Adv. Opt. Mater. 35, 2241–2249 (2013)

    CAS  Google Scholar 

  53. M. Salem, S. Akir, T. Ghrib, K. Daoudi, M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. J. Alloys Compd. 685, 107–113 (2016)

    CAS  Google Scholar 

  54. A.-B. Lavand, Y.-S. Malghe, Synthesis, characterization and visible light photocatalytic activity of carbon and iron modified ZnO. J. King Saud Univ. Sci. 30, 65–74 (2018)

    Google Scholar 

  55. A.-R. Rajabi, S. Jabbarzare, M.-R. Mohammad-Shafiee, M. Ghashang, Barium doped ZnO nano-particles: preparation and evaluation of their catalytic activity. Curr. Nanosci. 10, 2 (2014)

    Google Scholar 

  56. X. Liu, X. Wang, H. Li, J. Li, L. Pan, J. Zhang, G. Min, Z. Sun, C. Sun, Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO3: Tb3+ phosphors. Dalton Trans. 44, 97–103 (2015)

    PubMed  Google Scholar 

  57. W. Raza, S.-M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic; antibacterial and anticancer activity. RSC Adv. 6, 78335–78350 (2016)

    CAS  Google Scholar 

  58. O. Oprea, O. Vasile, G. Voicu, L. Craciun, E. Andronescu, Photoluminescence; magnetic properties and photocatalytic activity of Gd3+ doped ZnO nanoparticles. Dig. J. Nanomater. Biostruct. 7, 1757–1766 (2012)

    Google Scholar 

  59. G.-L. Kabongo, G.-H. Mhlongo, T. Malwela, B.-M. Mothudi, K.-T. Hillie, M.-S. Dhlamini, Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. J. Alloys Compd. 591, 156–163 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Imam Abdulrahman Bin Faisal University, Saudi Arabia through Grant No. 2019190. The authors gratefully acknowledge the use of the services and facilities of the Basic and Applied Scientific Research Center (BASRC) at Imam Abdulrahman Bin Faisal University. The authors gratefully acknowledge the services of the Institute for Research & Medical Consultations (IRMC) at Imam Abdulrahman Bin Faisal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Ghrib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghrib, T., Massoudi, I., Al-Otaibi, A.L. et al. Effects of Terbium Doping on Structural, Optical and Photocatalytic Properties of ZnO Nanopowder Prepared by Solid-State Reaction. J Inorg Organomet Polym 31, 239–250 (2021). https://doi.org/10.1007/s10904-020-01761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01761-w

Keywords

Navigation