Skip to main content
Log in

Composition-dependent tunability of thermoelectric properties at low temperature for Pr-doped LPFCO double perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current research focuses on the synthesis, characterization, and low temperature thermoelectric characteristics along with optical bandgap analysis of La2−xPrxFeCoO6 (x = 0, 0.25, 0.50, 0.75, and 1) double perovskite. The sintered sample’s crystal structure, microstructural features, electrical properties, and thermal transport parameters were examined. The nanocrystalline single-phase material was confirmed after 6 h of sintering, and the crystallite size increases with increasing Pr concentration along with the occurrences of various oxidation states of La, Pr, Fe, Co, and O. The conductivity analysis confirms the presence of a closest neighbor hopping charge carrier conduction mechanism due to decreased bandgap in entire samples. For all the compositions (x), conductivity, power factor, and figure of merit were increased with increasing temperature and Pr-content, confirming the presence of larger charge carrier concentration along with decreased bandgap. Positive S values indicate the presence of p-type charge carriers in LPFCO double perovskite and intrinsic behavior was conserved with increasing Pr-doping concentration (x). The highest Figure of Merit (ZT =  ~ 0.007) was observed for the LaPrFeCoO6 compound at 300 K. The observed results of ZT and their narrow optical bandgap suggested that, at ambient temperature, the LaPrFeCoO6 compound can be also a good choice for solar cells, sensors, bolometers, and other optoelectronic devices as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. He J, Kanatzidis MG, Dravid VP (2013) High performance bulk thermoelectrics via a panoscopic approach. Mater Today 16(5):166–176. https://doi.org/10.1016/j.mattod.2013.05.004

    Article  CAS  Google Scholar 

  2. Ovik R et al (2016) A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sustain Energy Rev 64:635–659. https://doi.org/10.1016/j.rser.2016.06.035

    Article  CAS  Google Scholar 

  3. Ali S et al (2022) Synthesis and bader analyzed cobalt-phthalocyanine modified solar UV-blind β-Ga2O3 quadrilateral nanorods photocatalysts for wide-visible-light driven H2 evolution. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2022.121149

    Article  Google Scholar 

  4. Ilyas T et al (2021) Designing a novel cactus-like nickel cobalt phosphide based electrocatalyst for hydrogen evolution. Appl Surf Sci 543:148726. https://doi.org/10.1016/j.apsusc.2020.148726

    Article  CAS  Google Scholar 

  5. Zada A et al (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv. Funct. Mater. 30(7):1906744. https://doi.org/10.1002/adfm.201906744

    Article  CAS  Google Scholar 

  6. Mahan G, Sales B (1997) Thermoelectric materials: new approaches to an old problem. Phys Today 50(3):42–47

    Article  CAS  Google Scholar 

  7. Raziq F et al (2022) Exceptional photocatalytic activities of rGO modified (B, N) Co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: a joint experimental and DFT study. Adv Sci 9(2):2102530. https://doi.org/10.1002/advs.202102530

    Article  CAS  Google Scholar 

  8. Bian Ji et al (2019) Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Angew Chem 131(32):10989–10994. https://doi.org/10.1002/ange.201905274

    Article  Google Scholar 

  9. Kush L et al (2020) Thermoelectric behaviour with high lattice thermal conductivity of Nickel base Ni2CuCrFeAlx (x= 0.5, 1.0, 1.5 and 2.5) high entropy alloys. Mater. Res. Express 7(3):035704. https://doi.org/10.1088/2053-1591/ab7d5a

    Article  CAS  Google Scholar 

  10. Liu Z-Y et al (2020) A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 9(6):647–673. https://doi.org/10.1007/s40145-020-0407-4

    Article  CAS  Google Scholar 

  11. Jang J et al (2020) Development of p-type Bi2−xSbxTe3 thermoelectric materials for power generation application exploiting synergetic effect of Sb alloying and repress process. Appl Surf Sci 508:145236. https://doi.org/10.1016/j.apsusc.2019.145236

    Article  CAS  Google Scholar 

  12. Liu W-D et al (2020) High-performance GeTe-based thermoelectrics: from materials to devices. Adv Energy Mater 10(19):2000367. https://doi.org/10.1002/aenm.202000367

    Article  CAS  Google Scholar 

  13. Wu HJ et al (2014) Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 Nat Commun 5(1):1–9. https://doi.org/10.1038/ncomms5515

    Article  CAS  Google Scholar 

  14. Moshwan R et al (2017) Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv. Funct. Mater. 27(43):1703278. https://doi.org/10.1002/adfm.201703278

    Article  CAS  Google Scholar 

  15. Fu C et al (2015) Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun 6(1):1–7. https://doi.org/10.1038/ncomms9144

    Article  CAS  Google Scholar 

  16. Iliev MN et al (2007) Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films. Phys Rev B 75(10). https://doi.org/10.1103/PhysRevB.75.104118

    Article  CAS  Google Scholar 

  17. Jia N et al (2021) Thermoelectric materials and transport physics. Mater. Today Phys. 21:100519. https://doi.org/10.1016/j.mtphys.2021.100519

    Article  CAS  Google Scholar 

  18. Rowe DM (ed) (2018) CRC Handbook of Thermoelectrics. CRC Press, Boca Raton, pp 211–407

    Google Scholar 

  19. He J, Liu Y, Funahashi R (2011) Oxide thermoelectrics: the challenges, progress, and outlook. J Mater Res 26(15):1762–1772. https://doi.org/10.1557/jmr.2011.108

    Article  CAS  Google Scholar 

  20. Chester GV, Thellung A (1961) The law of Wiedemann and Franz. Proc. Phys. Soc. (1958-1967) 77(5):1005. https://doi.org/10.1088/0370-1328/77/5/309

    Article  CAS  Google Scholar 

  21. Rogado NS et al (2005) Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6 Adv Mater 17(18):2225–2227. https://doi.org/10.1002/adma.200500737

    Article  CAS  Google Scholar 

  22. Kush L, Srivastava S (2022) Effect of mechanical milling and sintering on magnetic entropy of Ni-based Ni2CuCrFeAl x (x=0.5, 1.0, 1.5 and 2.5) high entropy alloys. Phase Trans. 95(5):406–421. https://doi.org/10.1080/01411594.2022.2048656

    Article  CAS  Google Scholar 

  23. Kush L et al (2020) Structural, magnetic, and exchange bias behavior of nickel-based Ni2CuCrFeAlx (x= 0.5, 1.0, 1.5, and 2.5) high-entropy alloys. J Mater Eng Perform 29(4):2256–2273. https://doi.org/10.1007/s11665-020-04791-0

    Article  CAS  Google Scholar 

  24. Saxena M, Balani K, Maiti T (2019) Structure and thermoelectric properties of calcium doped Sr2TiCoO6 double perovskites. Mater. Sci. Eng. B 244:65–71. https://doi.org/10.1016/j.mseb.2019.04.025

    Article  CAS  Google Scholar 

  25. Gorodea IA (2014) Influence of the B-site cation nature on crystal structure and magnetic properties of CaBMoO (B= Cr, La, Sm) double perovskite. Acta Chem. Iasi 22(2):145–154. https://doi.org/10.2478/achi-2014-0012

    Article  Google Scholar 

  26. Shang P-P et al (2011) Preparation and thermoelectric properties of La-doped SrTiO3 ceramics. J Electron Mater 40(5):926–931. https://doi.org/10.1007/s11664-010-1452-5

    Article  CAS  Google Scholar 

  27. Wu H et al (2021) Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chem Eng J 425:130668. https://doi.org/10.1016/j.cej.2021.130668

    Article  CAS  Google Scholar 

  28. Akubuiro EC, Verykios XE (1989) Effects of altervalent cation doping on electrical conductivity of platinized titania. J Phys Chem Solids 50(1):17–26. https://doi.org/10.1016/0022-3697(89)90467-8

    Article  CAS  Google Scholar 

  29. Lu G et al (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5(4):1353–1368. https://doi.org/10.1039/C2NR32453A

    Article  CAS  Google Scholar 

  30. Ngidi NPD, Ollengo MA, Nyamori VO (2019) Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide. Materials 12(20):3376. https://doi.org/10.3390/ma12203376

    Article  CAS  Google Scholar 

  31. Song Q et al (2016) The effect of shallow vs. deep level doping on the performance of thermoelectric materials. Appl Phys Lett 109(26):263902. https://doi.org/10.1063/1.4973292

    Article  CAS  Google Scholar 

  32. Grimmeiss HG (1977) Deep level impurities in semiconductors. Annu Rev Mater Sci 7:341–376

    Article  CAS  Google Scholar 

  33. Wu T, Gao P (2018) Development of perovskite-type materials for thermoelectric application. Materials 11(6):999. https://doi.org/10.3390/ma11060999

    Article  CAS  Google Scholar 

  34. Dusastre V (ed) (2010) Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, Singapore

    Google Scholar 

  35. Yang J, Yip H-L, Jen AK-Y (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3(5):549–565. https://doi.org/10.1002/aenm.201200514

    Article  CAS  Google Scholar 

  36. Choi WS, Yoo HK, Ohta H (2015) Polaron transport and thermoelectric behavior in La-doped SrTiO3 thin films with elemental vacancies. Adv. Funct. Mater. 25(5):799–804. https://doi.org/10.1002/adfm.201403023

    Article  CAS  Google Scholar 

  37. Dehkordi M, Arash et al (2014) Large thermoelectric power factor in Pr-doped SrTiO3−δ ceramics via grain-boundary-induced mobility enhancement. Chem Mater 26(7):2478–2485. https://doi.org/10.1021/cm4040853

    Article  CAS  Google Scholar 

  38. Venkatasubramanian R et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602. https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  39. Hansen P-A, Kumar S, Meijerink A (2021) Strong self-sensitized green and NIR emission in NaYS2 doped with Pr3+ and Yb3+ by inducing Laporte allowed and charge transfer transitions. J Lumin 235. https://doi.org/10.1016/j.jlumin.2021.118012

    Article  CAS  Google Scholar 

  40. Dorenbos P (2000) The 5d level positions of the trivalent lanthanides in inorganic compounds. J Lumin 91(3–4):155–176. https://doi.org/10.1016/S0022-2313(00)00229-5

    Article  CAS  Google Scholar 

  41. de Oliveira R, Cristina, et al (2020) Charge transfer in Pr-Doped cerium oxide: experimental and theoretical investigations. Mater Chem Phys 249:122967. https://doi.org/10.1016/j.matchemphys.2020.122967

    Article  CAS  Google Scholar 

  42. Muhammed Shafi P, Chandra Bose A (2015) Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv 5(5):057137. https://doi.org/10.1063/1.4921452

    Article  CAS  Google Scholar 

  43. Markandeya Y et al (2015) Characterization and thermal expansion of Sr2FexMo2-xO6 double perovskites. Bull Mater Sci 38(6):1603–1608. https://doi.org/10.1007/s12034-015-0972-2

    Article  CAS  Google Scholar 

  44. Tougaard S (1989) Practical algorithm for background subtraction. Surf Sci 216(3):343–360. https://doi.org/10.1016/0039-6028(89)90380-4

    Article  CAS  Google Scholar 

  45. Singh J, Kumar A (2019) Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites. Mater Sci Semicond Process 99:8–13. https://doi.org/10.1016/j.mssp.2019.04.007

    Article  CAS  Google Scholar 

  46. Hona, R.K.: Oxygen deficient perovskites: effect of structure on electrical conductivity, magnetism and electrocatalytic activity (2019). https://doi.org/10.18297/etd/3336

  47. Husanu M-A et al (2020) Electron-polaron dichotomy of charge carriers in perovskite oxides. Commun Phys 3(1):1–8. https://doi.org/10.1038/s42005-020-0330-6

    Article  Google Scholar 

  48. Liu J et al (2013) Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics. J Appl Phys 114(22). https://doi.org/10.1063/1.4847455

    Article  CAS  Google Scholar 

  49. Vedernikov, M.V., Iordanishvili, E.K.: AF Ioffe and origin of modern semiconductor thermoelectric energy conversion. In: Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365). IEEE (1998). https://doi.org/10.1109/ICT.1998.740313

  50. Xu L et al (2016) Synthesis, surface structure and optical properties of double perovskite Sr2NiMoO6 nanoparticles. Appl Surf Sci 389:849–857. https://doi.org/10.1016/j.apsusc.2016.07.117

    Article  CAS  Google Scholar 

  51. Xie Z et al (2014) Electrical, chemical, and electrochemical properties of double perovskite oxides Sr2Mg1–xNixMoO6−δ as anode materials for solid oxide fuel cells. J Phys Chem C 118(33):18853–18860. https://doi.org/10.1021/jp502503e

    Article  CAS  Google Scholar 

  52. Pei Z et al (2020) Structural characterization, dielectric, magnetic and optical properties of double perovskite Bi2FeMnO6 ceramics. J Magn Magn Mater 508:166891. https://doi.org/10.1016/j.jmmm.2020.166891

    Article  CAS  Google Scholar 

  53. Prasanna R et al (2017) Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc 139(32):11117–11124. https://doi.org/10.1021/jacs.7b04981

    Article  CAS  Google Scholar 

  54. Zhou W et al (2015) Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A=Pb, Ba; B= Ti) by ion substitution technique. Ceram Int 41(10):13389–13392. https://doi.org/10.1016/j.ceramint.2015.07.127

    Article  CAS  Google Scholar 

  55. Si S et al (2018) Modified structure and optical band-gap in perovskite ferroelectric (1–x) KNbO3-xBaCo1/3Nb2/3O3 ceramics. Ceram Int 44(12):14638–14644. https://doi.org/10.1016/j.ceramint.2018.05.088

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to MANIT, Bhopal, Madhya Pradesh, India (462003), for providing experimental/laboratory support while carrying out this work. Also, we wish to express our special gratitude to Dr. Sunderlal Pal, Assistant professor, Chemical Engineering Department, MANIT Bhopal for providing their valuable suggestions, and kind support throughout.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LK contributed to the study conception and design. Material preparation, data collection and analysis were performed by LK, SS, CS, SKV and YS. The first draft of the manuscript was written by LK and critical revision on previous versions of the manuscript was carried out by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lav Kush.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kush, L., Srivastava, S., Sasikumar, C. et al. Composition-dependent tunability of thermoelectric properties at low temperature for Pr-doped LPFCO double perovskite. J Mater Sci: Mater Electron 33, 17535–17550 (2022). https://doi.org/10.1007/s10854-022-08616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08616-9

Navigation