Skip to main content
Log in

Structural, Magnetic, and Exchange Bias Behavior of Nickel-Based Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5, and 2.5) High-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The magnetic properties of powdered and sintered samples of Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5, and 2.5) high-entropy alloys were investigated in detail by observing its relation to morphology by SEM, the presence of different phases by XRD, magnetization at the different operating field, and exchange bias with different training of the hysteresis loops. Two structural phases were observed in the sintered Ni2CuCrFeAlx HEAs, Al-free BCC solid solution in FCC matrix, and Al-containing C15 laves phase intermetallic compounds. In both cases, Ni, Cu, Cr, and Fe substituted randomly into the lattice that would result in the formation of martensitic structure with ferromagnetic characteristics beyond Tc. These results showed the corresponding state of Ni2CuCrFeAlx HEAs in which Cr- and Fe-rich particles (BCC structure) were noticed with higher Al content, and moreover, Ni-rich particle crystallizes in B2 structure dispersed in BCC phase. The substitution of Al in Ni2CuCrFeAlx composition increases the saturation magnetization with increasing applied field, regardless the alloy showing FCC, BCC and B2 phase structure during sintering. In spite of antiferromagnetic constituents of Cr in Ni2CuCrFeAlx alloy, polycrystalline HEAs exhibit higher ferromagnetic interaction at the interface of Ni-rich phase, which induces the exchange bias effect from the negative shift of magnetic hysteresis loop, observed in FC and ZFC modes. Likewise, sintered alloys are hard materials, indicated by their high values of exchange bias along with their coercivity. The addition of Al in Ni2CuCrFeAlx alloy improves the magnetic properties due to the existence of order–disorder phase transition from L21 to B2 or B2 to A2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt% NaCl Solution, J. Mater. Eng. Perform., 2018, 27(9), p 4481–4488

    Article  CAS  Google Scholar 

  2. V.C. Srivastava, G.K. Mandal, N. Ciftci, V. Uhlenwinkel, and L. Mädler, Processing of High-Entropy AlCoCr0.75Cu0.5FeNi Alloy by Spray Forming, J. Mater. Eng. Perform., 2017, 26(12), p 5906–5920

    Article  CAS  Google Scholar 

  3. M.H. Tasi and J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett, 2014, 2(3), p 107–123

    Article  Google Scholar 

  4. F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61, p 2628–2638

    Article  CAS  Google Scholar 

  5. D. Choudhuri, T. Alam, T. Borkar, B. Gwalani, A.S. Mantri, S.G. Srinivasan, M.A. Gibson, and R. Banerjee, Formation of a Huesler-Like L21 Phase in a CoCrCuFeNiAlTi High-Entropy Alloy, Scr. Mater., 2015, 100, p 36–39

    Article  CAS  Google Scholar 

  6. D.P. Morris, C.D. Price, and J.L. Hughes, The Heusler Structure of Au2MnAl, Acta Crystallogr., 2002, 16, p 839

    Article  Google Scholar 

  7. B. Gwalani, D. Choudhuri, V. Soni, Y. Ren, M. Styles, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, and R. Banerjee, Cu assisted Stabilization and Nucleation of L12 Precipitates in Al0.3CuFeCrNi2 FCC-Based High Entropy Alloy, Acta Mater., 2017, 129, p 170–182

    Article  CAS  Google Scholar 

  8. S. Huang, W. Li, X. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, and L. Vitos, Mechanism of Magnetic Transition in FeCrCoNi-Based High Entropy Alloys, Mater. Des., 2016, 103, p 71–74

    Article  CAS  Google Scholar 

  9. X.C. Li, D. Dou, Z.Y. Zheng, and J.C. Li, Microstructure and Properties of FeAlCrNiMox High-Entropy Alloys, J. Mater. Eng. Perform., 2016, 25(6), p 2164–2169

    Article  CAS  Google Scholar 

  10. J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson, The FCC–BCC Crystallographic Orientation Relationship in AlxCoCrFeNi High-Entropy Alloys, Mater. Lett., 2016, 176, p 29–32

    Article  CAS  Google Scholar 

  11. V.A. Oksenenko, L.N. Trofimova, Y.N. Petrov, Y.V. Kudryavtsev, J. Dubowik, and Y.P. Lee, Structural Dependence of Some Physical Properties of the Ni2MnGe Heusler Alloy Films, J. Appl. Phys., 2006, 99, p 1

    Article  Google Scholar 

  12. Y.P. Lee, J.B. Kim, S.Y. Park, G.J. Lee, J.Y. Rhee, and K.W. Kim, Effect of the Magnetic Field on a Magnetic Grating of Ni2MnGa, J. Korean Phys. Soc., 2009, 52, p 1605–1608

    Article  Google Scholar 

  13. M. Khan, I. Dubenko, S. Stadler, and N. Ali, The Structural and Magnetic Properties of Ni2 Mn1-xMxGa (M = Co, Cu), J. Appl. Phys., 2005, 97, p 95–98

    Google Scholar 

  14. S. Stadler, M. Khan, J. Mitchell, N. Ali, A.M. Gomes, I. Dubenko, A.Y. Takeuchi, and A.P. Guimarães, Magnetocaloric Properties of Ni2Mn1−xCuxGa, Appl. Phys. Lett., 2006, 88, p 33–36

    Article  Google Scholar 

  15. Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24(11), p 4475–4481

    Article  CAS  Google Scholar 

  16. N.V. Nong, L.T. Tai, N.T. Huy, N.T. Trung, C.R.H. Bahl, R. Venkatesh, F.W. Poulsen, and N. Pryds, Structural, Magnetic and Magnetocaloric Properties of Heusler Alloys Ni50Mn38Sb12 with Boron Addition, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2011, 176, p 1322–1325

    Article  CAS  Google Scholar 

  17. S. Morito, T. Kakeshita, K. Hirata, and K. Otsuka, Magnetic and Martensitic Transformations in Ni50AlxMn50−x Alloys, Acta Mater., 2002, 46, p 5377–5384

    Article  Google Scholar 

  18. Mehmet Acet, Eyup Duman, and Eberhard F. Wassermann, Coexisting Ferro- and Antiferromagnetism in Ni2MnAl Heusler Alloys, J. Appl. Phys., 2002, 92, p 7

    Article  Google Scholar 

  19. F. Gejima, Y. Sutou, R. Kainuma, and K. Ishida, Magnetic Transformation of Ni2AlMn Heusler-Type Shape Memory Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1999, 30, p 2721–2723

    Article  Google Scholar 

  20. L. Mañosa, A. Planes, M. Acet, E. Duman, and E.F. Wassermann, Magnetic Properties and Martensitic Transition in Annealed Ni50Mn30Al20, J. Appl. Phys., 2003, 93, p 8498–8500

    Article  Google Scholar 

  21. Katsunari Oikawa, Takuya Ota, Yuji Sutou, Toshihiro Ohmori, Ryosuke Kainuma, and Kiyohito Ishida, Magnetic and Martensitic Phase Transformations in a Ni54Ga27Fe19 Alloy, Mater. Trans., 2002, 43(9), p 2360–2362

    Article  CAS  Google Scholar 

  22. W. Maziarz, P. Czaja, T. Czeppe, A. Góral, L. Litynska-Dobrzynska, Ł. Major, and J. Dutkiewicz, Structure and Martensitic Transformation in Ni44Mn43.5Sn12.5−xAlxHeusler Alloys, Arch. Metall. Mater., 2013, 58, p 443–446

    Article  CAS  Google Scholar 

  23. R.Y. Umetsu, K. Kobayashi, R. Kainuma, Y. Yamaguchi, K. Ohoyama, A. Sakuma, and K. Ishida, Powder Neutron Diffraction Studies for the L21 Phase of Co2YGa (Y = Ti, V, Cr, Mn and Fe) Heusler Alloys, J. Alloys Compd., 2010, 499, p 1–6

    Article  CAS  Google Scholar 

  24. X. Zhu, E. Jiang, Y. Dai, and C. Luo, Stability, Magnetic, and Electronic Properties of L21 and B2 Phases in Co2MnAl Heusler Alloy, J. Alloys Compd., 2015, 632, p 528–532

    Article  CAS  Google Scholar 

  25. L. Kush, S. Srivastava, Y. Jaiswal, and Y. Srivastava, Thermoelectric Behaviour with High Lattice Thermal Conductivity of Nickel Base Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5 and 2.5) High Entropy Alloys, Mater. Res. Express, 2020, 7, p 1–16

    Article  Google Scholar 

  26. Y. Srivastava, S. Rathod, and S. Srivastava, Influence of Cr and Fe on Magnetic Phase Transition and Magnetocaloric Effect in Co2(Cr1−xFex)Al (x ≤ 0 ≤ 1) Soft Magnetic Heusler Alloys, Phase Transit., 2019, 92, p 205–216

    Article  CAS  Google Scholar 

  27. Y. Srivastava, S. Rathod, P.K. Singh, S.K. Vajpai, and S. Srivastava, Study of Magneto-Structural Phase Transitions and Magnetocaloric Effects in Co-Based Heusler Alloys Synthesized Via Mechanical Milling, J. Magn. Magn. Mater., 2018, 462, p 195–204

    Article  CAS  Google Scholar 

  28. C. Kittel, G.K. Bacon, G.W. Pratt, and H.S. Jarrett, First Theory Model of Exchange-Inversion, 1960 (120).

  29. M.K. Baig, H. Soleimani, N. Yahya, and M. Sabet, Magnetic Behavior of Ni/NiO Core–Shell Nanoparticles under Electromagnetic Waves for Oil–Water Interfacial Tension Reduction, J. Mater. Eng. Perform., 2019, 28(9), p 5882–5889

    Article  CAS  Google Scholar 

  30. M.M.P. de Azevedo, C. Binek, J. Kushauer, W. Kleemann, and D. Bertrand, Transient Spin Structures at the Antiferro-to-Paramagnetic Phase Boundary of FeBr2, J. Magn. Magn. Mater., 1995, 140–144, p 1557–1558

    Article  Google Scholar 

  31. F.L. Zan, Y.Q. Ma, Q. Ma, Y.F. Xu, Z.X. Dai, and G.H. Zheng, Giant Exchange Bias and Exchange Enhancement Observed in CoFe2O4-Based Composites, J. Alloys Compd., 2013, 581, p 263–269

    Article  CAS  Google Scholar 

  32. S.N. Dong, Y.P. Yao, Y. Hou, Y.K. Liu, Y. Tang, and X.G. Li, Dynamic Properties of Spin Cluster Glass and the Exchange Bias Effect in BiFeO3 Nanocrystals, Nanotechnology, 2011, 22, p 385701–385709

    Article  Google Scholar 

  33. L.H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Della Torre, and Y. Jin, Ferri- to Ferromagnetic Transition in the Martensitic Phase of a Heusler Alloy, J. Alloys Compd., 2012, 525, p 34–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work from Maulana Azad National Institute of Technology, Bhopal (MP) 462003, is gratefully acknowledged. We also express our gratitude to the Department of Materials and Metallurgical Engineering for providing the required facilities for completion of this research work. We are also very thankful to Dr. Satyabrata Das (Former Director CSIR-AMPRI Bhopal), Adjunct professor, MME Department, MANIT Bhopal, for his valuable discussion and kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lav Kush.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kush, L., Srivastava, S., Jaiswal, Y. et al. Structural, Magnetic, and Exchange Bias Behavior of Nickel-Based Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5, and 2.5) High-Entropy Alloys. J. of Materi Eng and Perform 29, 2256–2273 (2020). https://doi.org/10.1007/s11665-020-04791-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04791-0

Keywords

Navigation