Skip to main content
Log in

Structural, electrical, and optical features of Bi2FeCrO6 and Bi1.8La0.2FeCrO6 double perovskites for device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

By surpassing single perovskites, double perovskites without any sort of Lead content are applicable as materials for solar and related applications due to their more stable nature, good catalytic efficiency, and negligible toxicity. So as to investigate the structural, electrical, and other diverse aspects of the Bi2FeCrO6 and Bi1.8La0.2FeCrO6 materials, we have synthesised them using a traditional solid-state reaction technique. By performing X-ray diffraction study, the crystal structures for both the samples are found to be monoclinic. The sample’s strain and crystallite sizes were extracted using the Williamson-Hall formalism. Molecular bonding and metal oxide vibrations like Bi–O and Fe–O were analysed via Fourier transform infrared (FTIR) spectroscopy. To further verify crystal structure and optical phonon modes, Raman spectroscopy has been performed. The surface analysis of the samples recorded by FESEM reveals that the small grains are allocated homogeneously through distinctive grain barrier. Diffuse reflectance spectroscopy revealed narrow band gaps for both samples which makes them suitable for photo-catalytic actions. The extracted valence band maximum (VBM) levels of the samples are in the domain of O2 evolution criteria. Along with the Urbach energy, refractive indices were also calculated in optical studies. For electrical study, dielectric characteristics of the compounds were analysed over a large temperature series. The thermal variation of the frequency exponent (n) obtained from the fitting of Jonscher’s rule verified the existence of the correlated barrier hopping conduction method. From impedance spectroscopy, negative temperature coefficients of resistance (NTCR) response in addition to non-Debye type of relaxation were noted. DC conductivity experiments provide the activation energy of the materials. Thermistor applicability for samples shows promising results. Ferroelectricity has been confirmed for both the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Lv, Z. Li, Y. Yu, J. Yin, K. Song, B. Yang, L. Yuan, X. Hu, Copper/Cobalt-doped LaMnO3 perovskite oxide as a bi-functional catalyst for rechargeable Li-O2 batteries. J. Alloy. Compd. 801, 19–26 (2019)

    Article  CAS  Google Scholar 

  2. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    Article  CAS  Google Scholar 

  3. A.S. Bhalla, R. Guo, R. Roy, The perovskite structure-a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3–26 (2000)

    Article  CAS  Google Scholar 

  4. M.A. Basith, M.A. Islam, B. Ahmmad, M.D.S. Hossain, K. Mølhave, Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts. Mater. Res. Express 4, 075012 (2017)

    Article  Google Scholar 

  5. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, Room temperature dielectric and magnetic properties of Gd and Ti co-doped BiFeO3 ceramics. J. Appl. Phys. 115, 024102 (2014)

    Article  Google Scholar 

  6. N. Bonanos, K.S. Knight, B. Ellis, Perovskite solid electrolytes: Structure, transport properties and fuel cell applications. Solid State Ionics 79, 161–170 (1995)

    Article  CAS  Google Scholar 

  7. H. Fan, L. Liu, optimizing design of the microstructure of sol–gel derived BaTiO3 ceramics by artificial neural networks. J. Electroceramics. 22, 291–296 (2009)

    Article  CAS  Google Scholar 

  8. V.A. Turchenko, A. Trukhanov, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, H. Chiriac, B. Bozzo, I. Fina, J. Waliszewski, V.G. Kostishyn, K. Recko, S. Polosan, Magnetic and ferroelectric properties, crystal and magnetic structures of SrFe11.9In0.1O19. Phys. Scr. 95, 44006 (2020)

    Article  CAS  Google Scholar 

  9. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  10. C. Ederer, N.A. Spaldin, Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys. Rev. B 71, 224103 (2005)

    Article  Google Scholar 

  11. W. Prellier, M.P. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, R803–R832 (2005)

    Article  CAS  Google Scholar 

  12. T. Saha-Dasgupta, Double perovskites with 3d and 4d/5d transition metals: compounds with promises. Mater. Res. Express 7, 014003 (2000)

    Article  Google Scholar 

  13. J.L. Rosas, J.M. Cervantes, J. Le’on-Flores, E. Carvajal, J.A. Arenas, M. Romero, R. Escamilla, DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound. Mater. Today Commun. 23, 100844 (2020)

    Article  CAS  Google Scholar 

  14. Y. Zhao, T. Liu, Q. Shi, Q. Yang, C. Li, D. Zhang, C. Zhang, Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electro catalyst for lithium-air batteries. Green Energy Environ. 3(1), 78–85 (2018)

    Article  Google Scholar 

  15. B. Bhushan, D. Das, A. Priyam, N.Y. Vasanthacharya, S. Kumar, Enhancing the magnetic characteristics of BiFeO3 nanoparticles by Ca, Ba co-doping. Mater. Chem. Phys. 135, 144–149 (2012)

    Article  CAS  Google Scholar 

  16. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 3, 5811–5824 (2015)

    Article  CAS  Google Scholar 

  17. R. Hu, R. Ding, J. Chen, J. Hu, Y. Zhang, Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catal. Commun. 21, 38–41 (2012)

    Article  Google Scholar 

  18. R. Hu, C. Li, X. Wang, Y. Sun, H. Jia, H. Su, Y. Zhang, Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun. 29, 35–39 (2012)

    Article  CAS  Google Scholar 

  19. L. Mitoseriu, D. Marre, A.S. Siri, P. Nanni, Magnetic properties of PbFe2/3W1/3O3-PbTiO3 solid solutions. Appl. Phys. Lett. 83(26), 5509–5511 (2003)

    Article  CAS  Google Scholar 

  20. Y. Yang, J.M. Liu, H.B. Huang, W.Q. Zou, P. Bao, Z.G. Liu, Magneto electric coupling in ferroelectromagnet Pb(Fe1∕2Nb1∕2)O3 single crystals Phys. Rev. B 70, 132101 (2004)

    Article  Google Scholar 

  21. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. E. Ebtesam, D. Gawad, M. Mosry, M.M. Arman, Synthesis and functional properties of La2FeCrO6 based nanostructures. J. Inorg. Organomet. Polym. Mater. 33, 2698–2709 (2023)

    Article  Google Scholar 

  23. Y. Lee, J. Wu, C. Lai, Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 042903 (2006)

    Article  Google Scholar 

  24. Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89, 2123 (2006)

    Article  CAS  Google Scholar 

  25. L. Sahoo, B.N. Parida, R.K. Parida, R. Padhee, A.K. Mahapatra, Structural, optical dielectric and ferroelectric properties of double perovskite BaBiFeTiO6. Inorg. Chem. Commun. 146, 110102 (2022)

    Article  CAS  Google Scholar 

  26. B. Mohanty, B.N. Parida, R.K. Parida, Structural and conduction behaviour of (BaSr)0.5TiO3 modified in BFO perovskite. Mater. Chem. Phys. 225, 91–98 (2019)

    Article  CAS  Google Scholar 

  27. D.K. Pati, P.R. Das, R. Padhee, Structural, optical, electrical and magnetic characteristics of multiferroic [Pb(Fe0.5Nb0.5)O3]0.3–[(Ca0.2Sr0.8)TiO3]0.7 perovskite ceramic compound. J. Mater. Sci. Mater. Electron. 207, 331 (2023)

    Article  Google Scholar 

  28. A. Somvanshi, A. Ahmad, S. Husain, S. Manzoor, A.A.A. Qahtan, N. Zarrin, M. Fatema, W. Khan, Structural modifications and enhanced ferroelectric nature of NdFeO3–PbTiO3 composites. Appl. Phys. A 127, 424 (2021)

    Article  CAS  Google Scholar 

  29. S. Pillai, D. Bhuwal, T. Shripathi, V. Shelke, Synthesis of single phase bismuth ferrite compound by reliable one-step method. J. Mater. Sci. Mater. Electron. 24, 2950–2955 (2013)

    Article  CAS  Google Scholar 

  30. D.K. Pati, P.R. Das, B.N. Parida, R. Padhee, Multifunctional characterization of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5-[(Ca0.2Sr0.8)TiO3]0.5 for storage and photocatalytic applications. Ceram Intl. 48, 19344–19357 (2022)

    Article  CAS  Google Scholar 

  31. D.K. Pati, P.R. Das, R. Padhee, Electronic structure, optical and Mössbauer investigations of ferroelectric [Pb(Fe0.5Nb0.5)O3]0.2-[(Ca0.2Sr0.8)TiO3]0.8. Pramana J. Phys. 97, 53 (2023)

    Article  CAS  Google Scholar 

  32. D. Meng, T. Kang, L. Bi, H. Zhang, J. Zhai, F. Bai, Temperature-driven structural phase transition in double perovskite Bi2FeCrO6 films. Appl. Phys. Express 13, 011008 (2020)

    Article  CAS  Google Scholar 

  33. G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Microwave-assisted hydrothermal synthesis of BiFexCr1–xO3 ferroelectric thin films. Cryst. Growth Des. 17, 5697–5703 (2017)

    Article  CAS  Google Scholar 

  34. H. Deng, P. Yang, J. Chu, Effect of Cr doping on the structure, optical and magnetic properties of multiferroic BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 23, 1215–1218 (2012)

    Article  CAS  Google Scholar 

  35. N. Bajpai, M. Saleem, A. Mishra, Effect of bismuth (Bi3+) substitution on structural, optical, dielectric and magnetic nature of La2CoMnO6 double perovskite. J. Mater. Sci. Mater. Electron. 32, 12890–12902 (2021)

    Article  CAS  Google Scholar 

  36. J. Andreasson, J. Holmlund, C.S. Knee, M. Käll, L. Börjesson, S. Naler, J. Bäckström, M. Rübhausen, A.K. Azad, S.-G. Eriksson, Franck-Condon higher order lattice excitations in the LaFe1−xCrxO3 (x=0, 0.1, 0.5, 0.9, 1.0) perovskites due to Fe-Cr charge transfer effects. Phys. Rev. B 75, 104302 (2007)

    Article  Google Scholar 

  37. D.K. Pati, P.R. Das, B.N. Parida, B. Behera, R. Padhee, Structural, electrical, magnetic and narrow band gap-correlated optical characteristics of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5−[(Ba0.8Sr0.2) TiO3]0.5. J. Korean Cerm Soc. 59, 811–834 (2022)

    Article  CAS  Google Scholar 

  38. K.C.B. Naidu, W. Madhuri, Effect of nonmagnetic Zn2+ cations on initial permeability of microwave-treated NiMg ferrites. Int. J. Appl. Ceram. Technol. 13(6), 1090–1095 (2016)

    Article  Google Scholar 

  39. P. Kubelka, New contributions to the optics intensely light scattering materials. Part I. J Opt. Soc. Am. 38, 448–457 (1948)

    Article  CAS  Google Scholar 

  40. J. Suchanicz, K. Konieczny, K. Świerczek, M. Lipiński, M. Karpierz, D. Sitko, H. Czternastek, K. Kluczewska, Electrical transport in low-lead (1–x)BaTiO3–x PbMg1/3Nb2/3O3 ceramics. J. Adv. Ceramics 6, 207–219 (2017)

    Article  CAS  Google Scholar 

  41. H. Wu, Z. Pei, W. Xia, Y. Lu, K. Leng, X. Zhu, Structural, magnetic, dielectric and optical properties of double perovskite Bi2FeCrO6 ceramics synthesized under high pressure. J. Alloy. Compd. 819, 153007 (2020)

    Article  CAS  Google Scholar 

  42. M.D.I. Bhuyan, S. Das, M.A. Basith, Sol-gel synthesized double perovskite Gd2FeCrO6 nanoparticles: structural, magnetic and optical properties. J. Alloys Compd. 878, 160389 (2021)

    Article  CAS  Google Scholar 

  43. V.M. Gaikwad, M. Brahma, R. Borah, S. Ravi, Structural, optical and magnetic properties of Pr2FeCrO6 nanoparticles. J. Solid State Chem. 208, 120903 (2019)

    Article  Google Scholar 

  44. M.J. Hosen, M.A. Basith, I.M. Syed, Structural, magnetic and optical properties of disordered double perovskite Gd2CoCrO6 nanoparticles. RSC Adv. 13(26), 17545 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. N.Y. Mostafa, A. Badawi, S.I. Ahmed, Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 10, 126–131 (2018)

    Article  Google Scholar 

  46. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, and V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modifed BaTiO3 solid solution. Ceram. Int. 46, 27336–27351 (2020)

    Article  CAS  Google Scholar 

  47. R.S. Mulliken, A new electroafnity scale together with data on valence states and on valence ionization potentials and electron afnities. J. Chem. Phys. 2, 782–793 (1934)

    Article  CAS  Google Scholar 

  48. R.S. Mulliken, Electronic structures of molecules XI. Electroaffnity, molecular orbitals and dipole moments. J. Chem. Phys. 3, 573–585 (1935)

    Article  CAS  Google Scholar 

  49. Y. Wang, H. Suzuki, J. Xie, O. Tomita, D.J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J. Wang, Y. Gao, D. Chen, J. Liu, Z. Zhang, Z. Shao, F. Ciucci, Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 8, 364–371 (2018)

    Article  CAS  Google Scholar 

  51. D. Guan, J. Zhou, Z. Hu, W. Zhou, X. Xu, Y. Zhong, B. Liu, Y. Chen, M. Xu, H.-J. Lin, C.-T. Chen, J.-Q. Wang, Z. Shao, Searching general sufficient-and necessary conditions for ultrafast hydrogen-evolving electrocatalysis. Adv. Funct. Mater. 29, 1900704 (2019)

    Article  Google Scholar 

  52. W. Zhou, J. Sunarso, Z.G. Chen, L. Ge, J. Motuzas, J. Zou, G. Wang, A. Julbe, Z. Zhu, Novel B-site ordered double perovskite Ba2Bi0.1Sc0.2Co1.7O6−x for highly efficient oxygen reduction reaction. Energy Environ. Sci. 4, 872–875 (2011)

    Article  CAS  Google Scholar 

  53. Y. Tong, J. Wu, P. Chen, H. Liu, W. Chu, C. Wu, Y. Xie, Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 140, 11165–21116 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers, W.T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K.J.J. Mayrhofer, M.T.M. Koper, S. Cherevko, The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018)

    Article  CAS  Google Scholar 

  55. A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016)

    Article  Google Scholar 

  56. E. Cui, G. Hou, Z. Wang, Q. Sun, Y. Wu, J. Wan, F. Zhang, X. Chen, Y. Wu, Nanoscale SrFe0.5Ta0.5O3 double perovskite photocatalyst: Low-temperature solvothermal synthesis and photocatalytic NO oxidation performances. Appl. Surface Sci. 531, 147324 (2020)

    Article  CAS  Google Scholar 

  57. F. Sharmin, D. Chandra Roy, M.A. Basith, Photocatalytic water splitting ability of Fe/MgO-rGO nanocomposites towards hydrogen evolution. Int. J. Hydrogen Energy 46, 38232–38246 (2021)

    Article  CAS  Google Scholar 

  58. E.H. Nicollian, J.R. Brews, Metal oxide semiconductor (MOS) physics and technology (Willey, New York, 1982)

    Google Scholar 

  59. E.H. Nicollian, A. Goetzberger, MOS conductance technique for measuring surface state parameters. Appl. Phys. Lett. 7(8), 216–219 (1965)

    Article  CAS  Google Scholar 

  60. B. Mohanty, B.N. Parida, R.K. Parida, Multiferroic andoptical spectroscopic behaviour of BST in BFO environment. J. Mater. Sci. Mater. Electron.n. 30, 9211–9218 (2019)

    Article  CAS  Google Scholar 

  61. P. Kumar, S. Ghara, B. Rajeswaran, D.V.S. Muthu, A. Sundaresan, A.K. Sood, Temperature dependent magnetic, dielectric and Raman studies of partially disordered La2NiMnO6. Solid State Comm. 184, 47–51 (2014)

    Article  CAS  Google Scholar 

  62. B.N. Parida, R. Padhee, D. Suara, A. Mishra, R.N.P. Choudhary, Multiferroic and conduction characteristics of (Bi0.5Ba0.5)(Fe0.5Ti0.5)O3 solid solution. J. Mater. Sci. Mater. Electron. 27, 9015–9021 (2016)

    Article  CAS  Google Scholar 

  63. L. Fu, K. Liu, B. Zhang, J. Chu, H. Wang, M. Wang, Capacitance–voltage characteristics of Bi4Ti3O12/p-Si interface. Appl. Phys. Lett. 72(14), 1784–1786 (1998)

    Article  CAS  Google Scholar 

  64. R. Das, P. Kumar, R.N.P. Choudhary, Studies of structural and electrical properties of (Pb0.9Bi0.05Dy0.05) (Fe0.2Ti0.8)O3. Appl. Phys. A 126, 886 (2020)

    Article  CAS  Google Scholar 

  65. R.K. Parida, D.K. Pattanayak, B.N. Parida, Impedance and modulus analysis of double perovskite Pb2BiVO6. J. Mater. Sci. Mater. Electron. 28, 16689 (2017)

    Article  CAS  Google Scholar 

  66. D.K. Pati, M. Priyadarsini, P.R. Das, B.N. Parida, R. Padhee, Multiferroic, structural, optical and conduction characteristics of PFN-BST. J. Elect. Mat. 51, 1385–1400 (2022)

    Article  CAS  Google Scholar 

  67. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008)

    Article  CAS  Google Scholar 

  68. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  69. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  70. S.R. Elliot, A theory of ac conduction in chalcogenide glasses. Philos. Magn. 36, 1291–1304 (1977)

    Article  Google Scholar 

  71. T. Mondal, S. Das, T.P. Sinha, P.M. Sarun, Dielectric relaxation and study of electrical conduction mechanism in BaZr0.1Ti0.9O3 ceramics by correlated barrier hopping model. Mater. Sci. Pol. 36(1), 112–122 (2018)

    Article  CAS  Google Scholar 

  72. E.J.W. Verwey, P.W. Hayman, Electronic conductivity and transition point of magnetite Fe3O4. Physica 8, 979–987 (1941)

    Article  CAS  Google Scholar 

  73. H. Kim, D.H. Seo, J.C. Kim, S.H. Bo, L. Liu, T. Shi, G. Ceder, Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 29, 1702480–2170245 (2017)

    Article  Google Scholar 

  74. S. Mishra, R.N.P. Choudhary, S.K. Parida, Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices. Ceram. Int. 48(12), 17020–17033 (2022)

    Article  CAS  Google Scholar 

  75. K. Park, J.K. Lee, J.-G. Kim, S. Nahm, Improvement in the electrical stability of Mn–Ni–Co–O NTC thermistors by substituting Cr2O3 for Co3O4. J Alloys Comp. 437, 211–221 (2007)

    Article  CAS  Google Scholar 

  76. X. Liu, Y. Luo, X. Li, Electrical properties of BaTiO3-based NTC ceramics doped by BaBiO3 and Y2O3. J Alloys Comp. 459, 45–50 (2008)

    Article  CAS  Google Scholar 

  77. W. Luo, H.-M. Yao, P.-H. Yang, C-S Chen Negative temperature coefficient material with low thermal constant and high resistivity for low-temperature thermistor applications. J. Am. Ceram. Soc. 92, 2682–2686 (2009)

    Article  CAS  Google Scholar 

  78. B.N. Parida, R. Padhee, D. Suara, A. Mishra, R.N.P. Choudhary, Multiferroic and conduction characteristics of (Bi0.5Ba0.5) (Fe0.5Ti0.5) O3 solid solution. J. Mater. Sci. Mater. Electron. 27, 9015 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MM: This manuscript is related to Ms. Mitrabinda Mahapatra’s PhD thesis work. Almost all experiments like synthesis, XRD, FTIR, electrical characterisations, have been contributed by her. In addition, she has prepared the manuscript draft, studied the literature survey, results and discussion. RP: Dr. Rajib Padhee is the PhD supervisor of Ms. Mahapatra. His contribution is vital because he has designed the research problem and provided guidance for analysis of the results. DKP: Mr. Dinesh Kumar Pati helped in the analysis of UV–Vis data, photo-catalytic and conductivity analysis of the samples. RKP: Dr. Rajanikanta Parida is another supervisor of Ms. Mahapatra,who is an expert in the field of multiferroics and whose expertise have been utilised by Ms. Mahapatra for analysis of the results. PKS, BKS: Dr. Pratap Kumar Sahoo and Dr. Binaya kumar Sahoo helped in experimental works relating to FESEM, RAMAN and UV–VIS. BNP: Dr. B. N. Parida provided critical comments on the structural analysis.

Corresponding author

Correspondence to R. Padhee.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication and there has been no financial support for this work that could have influenced its outcome and also confirm that this article has not been submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, M., Pati, D.K., Sahu, B. et al. Structural, electrical, and optical features of Bi2FeCrO6 and Bi1.8La0.2FeCrO6 double perovskites for device applications. J Mater Sci: Mater Electron 35, 582 (2024). https://doi.org/10.1007/s10854-024-12311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12311-2

Navigation