Skip to main content
Log in

Recent advances in field-effect transistors for heavy metal ion detection

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Water is an essential requirement for human livelihood, but drinkable water becomes more insufficient due to its limited accessibility and continual contamination. Heavy metal ions (HMIs) are considered as highly nocuous and nonbiodegradable carcinogens that contaminate groundwater resources and then cause serious diseases. Hence, it is necessary to develop and improve nanoscale HMI detection approaches in aqueous systems with high sensitivity, selectivity, real-time and accuracy. This review introduces the hazardous effect of HMIs on living organisms and focuses on the latest advances in HMI detection with semiconductor materials and the corresponding field-effect transistor (FET) sensors, including two-dimensional FETs, organic FETs, ion-selective FETs, and high electron mobility transistors (HEMTs). Finally, the concluded mechanism of HMI detection is described, and the outlook concerning to the research direction of HMIs detection by FET sensors is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2011 American Chemical Society. e Microcontroller-based portable capacitance measurement system controlled by pulse. f Real-time Pb2+ testing results by the measurement system. g Typical real-time transient data for the selectivity test for Hg2+ and mixed ion measurements. h Comparison of the response% of Pb2+ (2.5 ppb) with other individual and mixed metal cations (10 ppb). Adapted with permission from [93]. Copyright 2017 American Chemical Society. i Schematic diagram of the TGA-AuNP/rGO hybrid sensor. j Its dynamic response for Hg2+ ions. Adapted with permission from [94]. Copyright 2012 American Chemical Society

Fig. 3

Copyright 2021 American Chemical Society. d Scheme of an SGGT with the Fe–N–C SAE&Cs/Au-modified gate electrode for the detection of Hg2+ ions. e Dynamic response of the modified SGGT for Hg2+ ions. f Response of selectivity of SGGT with a modified gate electrode. Adapted with permission from [97]. Copyright 2020 American Chemical Society. g Schematic of the rGO FET sensor with GSH modification of Au NPs for the formation of distinct recognition groups to recognize Pb2+ ions. h The detection of Pb2+ in drinking water in real time. i The corresponding dynamic response. Adapted with permission from [8]. Copyright 2014 American Chemical Society

Fig. 4

Copyright 2016 American Chemical Society. d MoS2 sensors functionalized with ionophores. e Optical microscope image of a MoS2 sensor on a PET substrate, scale bar: 10 μm. f The response of MoS2 can be effectively tuned by stain application. g Responses of 4 different MoS2 sensors to 5 μg/mL Na+, Hg2+, Pb2+, and Cd2+ Reproduced with permission from Ref. [109]. Copyright 2019, Elsevier

Fig. 5

Reproduced with permission from Ref. [149]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref. [165]. Copyright 2004, Elsevier. d Schematic diagram of the GaN-capped ISFET sensor cross-section with a decorated membrane. e Schematic diagram of the device assembled by the terminals and membrane. f An increase in the channel (2DEG) density caused by Hg2+ ions captured by ionophores. g Diagram of the equilibrium sensor response versus Hg2+ concentration when adding Hg(NO3)2 solution. Reproduced with permission from Ref. [169]. Copyright 2019, Elsevier

Fig. 7
Fig. 8

Reproduced with permission from Ref. [152]. Copyright 2019, Elsevier

Fig. 9

Copyright 2017 American Chemical Society

Similar content being viewed by others

Data availability

Data sharing is not applicable to this review as no datasheets were generated and analysed during the current study.

References

  1. B. Aguila, Q. Sun, J.A. Perman, L.D. Earl, C.W. Abney, R. Elzein, R. Schlaf, S. Ma, Efficient mercury capture using functionalized porous organic polymer. Adv. Mater. 29(31), 1700665 (2017)

    Article  CAS  Google Scholar 

  2. H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.F. Masson, W. Peng, Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing. ACS Sens. 4(3), 704–710 (2019)

    Article  CAS  Google Scholar 

  3. Q. Lin, Y.Q. Fan, P.P. Mao, L. Liu, J. Liu, Y.M. Zhang, H. Yao, T.B. Wei, Pillar[5]arene-based supramolecular organic framework with multi-guest detection and recyclable separation properties. Chemistry 24(4), 777–783 (2018)

    Article  CAS  Google Scholar 

  4. R. Kaur, S. Sharma, H. Kaur, Heavy metals toxicity and the environment. J. Pharmacogn. Phytochem. SP1, 247–249 (2019)

    Google Scholar 

  5. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60 (2014)

    Article  CAS  Google Scholar 

  6. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment. Exp. Suppl. 101, 133–164 (2012)

    Google Scholar 

  7. G. WHO, Guidelines for Drinking-Water Quality, vol. 216 (World Health Organization, Geneva, 2011), pp. 303–304

    Google Scholar 

  8. G. Zhou, J. Chang, S. Cui, H. Pu, Z. Wen, J. Chen, Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl. Mater. Interfaces 6(21), 19235–19241 (2014)

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Bi, R. Wang, L. Wang, H. Qu, L. Zheng, DNA-gated graphene field-effect transistors for specific detection of arsenic(III) in rice. J. Agric. Food Chem. 69(4), 1398–1404 (2021)

    Article  CAS  Google Scholar 

  10. M. Filipic, Mechanisms of cadmium induced genomic instability. Mutat. Res. 733(1–2), 69–77 (2012)

    Article  CAS  Google Scholar 

  11. M. Olivares, R. Uauy, Copper as an essential nutrient. Am. J. Clin. Nutr. 63(5), 791S-796S (1996)

    Article  CAS  Google Scholar 

  12. J.C. King, Zinc: an essential but elusive nutrient. Am. J. Clin. Nutr. 94(2), 679S-S684 (2011)

    Article  Google Scholar 

  13. Z. Ayazi, M. Banihashemi, Determination of trace amount of silver in water samples by flame atomic absorption after preconcentration by ZnO nano sorbent. Sep. Sci. Technol. 51(4), 585–593 (2016)

    Article  CAS  Google Scholar 

  14. L. Toropov, S. Popova, Extraction preconcentration of noble metals using diantipyrylthiourea for determination by atomic emission spectrometry. J. Anal. Chem. (New York, NY) 53(3), 249–253 (1998)

    CAS  Google Scholar 

  15. Q. Jin, H. Zhang, W. Yang, Q. Jin, Y. Shi, Determination of trace Ag, Au, Ge, Pb, Sn and Te by microwave plasma torch atomic emission spectrometry coupled with an electrothermal vaporization sample introduction system. Talanta 44(9), 1605–1614 (1997)

    Article  CAS  Google Scholar 

  16. J. Lu, H. Ni, C. Mao, Ethyl acetate extraction atomic fluorescence spectrometric determination of trace silver in seawater. Asian J. Chem. 25(15), 8368–8370 (2013)

    Article  CAS  Google Scholar 

  17. I. Gornushkin, B. Smith, J. Winefordner, Use of laser-excited atomic fluorescence spectrometry with a novel diffusive graphite tube electrothermal atomizer for the direct determination of silver in sea water and in solid reference materials. Spectrochim. Acta Part B At. Spectrosc. 51(11), 1355–1370 (1996)

    Article  Google Scholar 

  18. O. Šipr, G. Dalba, F. Rocca, Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorption near-edge structure spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 69(13), 134201 (2004)

    Article  CAS  Google Scholar 

  19. Z.-Q. Tan, Y.-G. Yin, X.-R. Guo, M. Amde, M.H. Moon, J.-F. Liu, G.-B. Jiang, Tracking the transformation of nanoparticulate and ionic silver at environmentally relevant concentration levels by hollow fiber flow field-flow fractionation coupled to ICPMS. Environ. Sci. Technol. 51(21), 12369–12376 (2017)

    Article  CAS  Google Scholar 

  20. X. Yu, B. Chen, M. He, H. Wang, B. Hu, 3D droplet-based microfluidic device easily assembled from commercially available modules online coupled with ICPMS for determination of silver in single cell. Anal. Chem. 91(4), 2869–2875 (2019)

    Article  CAS  Google Scholar 

  21. K. Huang, K. Xu, J. Tang, L. Yang, J. Zhou, X. Hou, C. Zheng, Room temperature cation exchange reaction in nanocrystals for ultrasensitive speciation analysis of silver ions and silver nanoparticles. Anal. Chem. 87(13), 6584–6591 (2015)

    Article  CAS  Google Scholar 

  22. G.S. Timmins, K.J. Liu, E.J. Bechara, Y. Kotake, H.M. Swartz, Trapping of free radicals with direct in vivo EPR detection: a comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4−. Free Radic. Biol. Med. 27(3–4), 329–333 (1999)

    Article  CAS  Google Scholar 

  23. T. Narukawa, K. Chiba, S. Sinaviwat, J. Feldmann, A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1479, 129–136 (2017)

    Article  CAS  Google Scholar 

  24. T. Narukawa, K. Inagaki, T. Kuroiwa, K. Chiba, The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 77(1), 427–432 (2008)

    Article  CAS  Google Scholar 

  25. A.J. Signes-Pastor, M. Carey, A.A. Meharg, Inorganic arsenic removal in rice bran by percolating cooking water. Food Chem. 234, 76–80 (2017)

    Article  CAS  Google Scholar 

  26. J. Richter, S. Lischka, C. Piechotta, Analysis of arsenic species in fish after derivatization by GC-MS. Talanta 101, 524–529 (2012)

    Article  CAS  Google Scholar 

  27. V.C. Ezeh, T.C. Harrop, A sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media. Inorg. Chem. 51(3), 1213–1215 (2012)

    Article  CAS  Google Scholar 

  28. M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem. Int. Ed. Engl. 47(34), 6456–6460 (2008)

    Article  CAS  Google Scholar 

  29. E.S. Forzani, K. Foley, P. Westerhoff, N. Tao, Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sens. Actuators B 123(1), 82–88 (2007)

    Article  CAS  Google Scholar 

  30. P.T. Trang, M. Berg, P.H. Viet, N. Van Mui, J.R. Van Der Meer, Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 39(19), 7625–7630 (2005)

    Article  CAS  Google Scholar 

  31. X. Chen, G. Zhou, S. Mao, J. Chen, Rapid detection of nutrients with electronic sensors: a review. Environ. Sci. Nano 5(4), 837–862 (2018)

    Article  CAS  Google Scholar 

  32. C. Liu, Z. Ye, X. Wei, S. Mao, Recent advances in field-effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. Electrochem. Sci. Adv. (2021). https://doi.org/10.1002/elsa.202100137

    Article  Google Scholar 

  33. A. Bhan, N.N. Sarkar, Mercury in the environment: effect on health and reproduction. Rev. Environ. Health 20(1), 39–56 (2005)

    Article  CAS  Google Scholar 

  34. T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury—current exposures and clinical manifestations. N. Engl. J. Med. 349(18), 1731–1737 (2003)

    Article  CAS  Google Scholar 

  35. N. Langford, R. Ferner, Toxicity of mercury. J. Hum. Hypertens. 13(10), 651–656 (1999)

    Article  CAS  Google Scholar 

  36. B. Fernandes Azevedo, L. Barros Furieri, F.M. Pecanha, G.A. Wiggers, P. Frizera Vassallo, M. Ronacher Simoes, J. Fiorim, P.R. de Batista, M. Fioresi, L. Rossoni, I. Stefanon, M.J. Alonso, M. Salaices, D. Valentim Vassallo, Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol. 2012, 949048 (2012)

    Article  CAS  Google Scholar 

  37. R. Zefferino, C. Piccoli, N. Ricciardi, R. Scrima, N. Capitanio, Possible mechanisms of mercury toxicity and cancer promotion: involvement of gap junction intercellular communications and inflammatory cytokines. Oxid. Med. Cell. Longev. 2017, 7028583 (2017)

    Article  CAS  Google Scholar 

  38. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5(3), 2782–2799 (2017)

    Article  CAS  Google Scholar 

  39. M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water–an electrochemical approach. Sens. Actuators B 213, 515–533 (2015)

    Article  CAS  Google Scholar 

  40. E.L. Que, D.W. Domaille, C.J. Chang, Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108(5), 1517–1549 (2008)

    Article  CAS  Google Scholar 

  41. L.M. Gaetke, H.S. Chow-Johnson, C.K. Chow, Copper: toxicological relevance and mechanisms. Arch. Toxicol. 88(11), 1929–1938 (2014)

    Article  CAS  Google Scholar 

  42. P.B. Tchounwou, B. Wilson, A. Ishaque, Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Rev. Environ. Health 14(4), 211–29 (1999)

    Article  CAS  Google Scholar 

  43. N. Das, S. Paul, D. Chatterjee, N. Banerjee, N.S. Majumder, N. Sarma, T.J. Sau, S. Basu, S. Banerjee, P. Majumder, Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12(1), 1–9 (2012)

    Article  Google Scholar 

  44. C.H. Tseng, The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol. Appl. Pharmacol. 197(2), 67–83 (2004)

    Article  CAS  Google Scholar 

  45. P. Ghosh, M. Banerjee, S. De Chaudhuri, R. Chowdhury, J.K. Das, A. Mukherjee, A.K. Sarkar, L. Mondal, K. Baidya, T.J. Sau, Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J. Expo. Sci. Environ. Epidemiol. 17(3), 215–223 (2007)

    Article  CAS  Google Scholar 

  46. M. Banerjee, J. Sarkar, J.K. Das, A. Mukherjee, A.K. Sarkar, L. Mondal, A.K. Giri, Polymorphism in the ERCC2 codon 751 is associated with arsenic-induced premalignant hyperkeratosis and significant chromosome aberrations. Carcinogenesis 28(3), 672–676 (2007)

    Article  CAS  Google Scholar 

  47. N. Banerjee, M. Banerjee, S. Ganguly, S. Bandyopadhyay, J.K. Das, A. Bandyopadhay, M. Chatterjee, A.K. Giri, Arsenic-induced mitochondrial instability leading to programmed cell death in the exposed individuals. Toxicology 246(2–3), 101–111 (2008)

    Article  CAS  Google Scholar 

  48. D.N. Mazumder, Effect of chronic intake of arsenic-contaminated water on liver. Toxicol. Appl. Pharmacol. 206(2), 169–175 (2005)

    Article  CAS  Google Scholar 

  49. D. Chakraborti, M.M. Rahman, B. Das, M. Murrill, S. Dey, S. Chandra Mukherjee, R.K. Dhar, B.K. Biswas, U.K. Chowdhury, S. Roy, S. Sorif, M. Selim, M. Rahman, Q. Quamruzzaman, Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res. 44(19), 5789–802 (2010)

    Article  CAS  Google Scholar 

  50. N.H. Khdary, A.E. Gassim, The distribution and accretion of some heavy metals in Makkah Wells. J. Water Resour. Prot. 6, 998 (2014)

    Article  CAS  Google Scholar 

  51. A.K. Krishna, M. Satyanarayanan, P.K. Govil, Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 167(1–3), 366–373 (2009)

    Article  CAS  Google Scholar 

  52. Y.-T. Chen, I. Sarangadharan, R. Sukesan, C.-Y. Hseih, G.-Y. Lee, J.-I. Chyi, Y.-L. Wang, High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Sci. Rep. 8(1), 1–11 (2018)

    Google Scholar 

  53. Y. Finkelstein, M.E. Markowitz, J.F. Rosen, Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res. Brain Res. Rev. 27(2), 168–176 (1998)

    Article  CAS  Google Scholar 

  54. M. Lustberg, E. Silbergeld, Blood lead levels and mortality. Arch. Intern. Med. 162(21), 2443–2449 (2002)

    Article  CAS  Google Scholar 

  55. V.M. Weaver, B.G. Jaar, B.S. Schwartz, A.C. Todd, K.-D. Ahn, S.-S. Lee, J. Wen, P.J. Parsons, B.-K. Lee, Associations among lead dose biomarkers, uric acid, and renal function in Korean lead workers. Environ. Health Perspect. 113(1), 36–42 (2005)

    Article  CAS  Google Scholar 

  56. B. Gulson, D. Howarth, K. Mizon, Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. Bull. Environ. Contam. Toxicol. 56(4), 543 (1996)

    Article  CAS  Google Scholar 

  57. M. Szymanski, Molecular mechanisms of lead toxicity. Biotechnologia (Poznan) 95(2), 137 (2014)

    Article  CAS  Google Scholar 

  58. B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017)

    Article  CAS  Google Scholar 

  59. S. Satarug, J.R. Baker, S. Urbenjapol, M. Haswell-Elkins, P.E. Reilly, D.J. Williams, M.R. Moore, A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137(1–2), 65–83 (2003)

    Article  CAS  Google Scholar 

  60. M. Nishijo, H. Nakagawa, Y. Suwazono, K. Nogawa, T. Kido, Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open 7(7), e015694 (2017)

    Article  Google Scholar 

  61. H. Pi, S. Xu, R.J. Reiter, P. Guo, L. Zhang, Y. Li, M. Li, Z. Cao, L. Tian, J. Xie, R. Zhang, M. He, Y. Lu, C. Liu, W. Duan, Z. Yu, Z. Zhou, SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11(7), 1037–1051 (2015)

    Article  CAS  Google Scholar 

  62. S. Demim, N. Drouiche, A. Aouabed, T. Benayad, O. Dendene-Badache, S. Semsari, Cadmium and nickel: assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol. Eng. 61, 426–435 (2013)

    Article  Google Scholar 

  63. M.R. Rahimzadeh, M.R. Rahimzadeh, S. Kazemi, A.-A. Moghadamnia, Cadmium toxicity and treatment: an update. Caspian J. Intern. Med. 8(3), 135 (2017)

    Google Scholar 

  64. K. Shekhawat, S. Chatterjee, B. Joshi, Chromium toxicity and its health hazards. Int. J. Adv. Res. 3(7), 167–172 (2015)

    CAS  Google Scholar 

  65. R.T. Achmad, E.I. Auerkari, Effects of chromium on human body. Annu. Res. Rev. Biol. 13, 1–8 (2017)

    Article  Google Scholar 

  66. J. Guertin, J.A. Jacobs, C.P. Avakian, Chromium (VI) Handbook (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  67. A.K. Patlolla, C. Barnes, C. Yedjou, V.R. Velma, P.B. Tchounwou, Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ. Toxicol. 24(1), 66–73 (2009)

    Article  CAS  Google Scholar 

  68. Z. Fang, M. Zhao, H. Zhen, L. Chen, P. Shi, Z. Huang, Genotoxicity of tri-and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 9(8), e103194 (2014)

    Article  CAS  Google Scholar 

  69. S.S. Wise, A.E. Aboueissa, J. Martino, J.P. Wise Sr., Hexavalent chromium-induced chromosome instability drives permanent and heritable numerical and structural changes and a DNA repair-deficient phenotype. Cancer Res. 78(15), 4203–4214 (2018)

    Article  CAS  Google Scholar 

  70. T. Davidson, T. Kluz, F. Burns, T. Rossman, Q. Zhang, A. Uddin, A. Nadas, M. Costa, Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice. Toxicol. Appl. Pharmacol. 196(3), 431–437 (2004)

    Article  CAS  Google Scholar 

  71. D.J. Paustenbach, B.L. Finley, F.S. Mowat, B.D. Kerger, Human health risk and exposure assessment of chromium (VI) in tap water. J. Toxicol. Environ. Health A 66(14), 1295–1339 (2003)

    Article  CAS  Google Scholar 

  72. S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 52(6), 1636–1653 (2013)

    Article  CAS  Google Scholar 

  73. Z.M. Xiu, J. Ma, P.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 45(20), 9003–9008 (2011)

    Article  CAS  Google Scholar 

  74. E. McGillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan, D. Morris, Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci. Total Environ. 575, 231–246 (2017)

    Article  CAS  Google Scholar 

  75. Y. Lai, L. Dong, H. Zhou, B. Yan, Y. Chen, Y. Cai, J. Liu, Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag(+)in vivo. Sci. Total Environ. 723, 138050 (2020)

    Article  CAS  Google Scholar 

  76. R.C. Hider, X. Kong, Iron speciation in the cytosol: an overview. Dalton Trans. 42(9), 3220–3229 (2013)

    Article  CAS  Google Scholar 

  77. N.M. Bastide, F. Chenni, M. Audebert, R.L. Santarelli, S. Tache, N. Naud, M. Baradat, I. Jouanin, R. Surya, D.A. Hobbs, G.G. Kuhnle, I. Raymond-Letron, F. Gueraud, D.E. Corpet, F.H. Pierre, A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 75(5), 870–879 (2015)

    Article  CAS  Google Scholar 

  78. Q. Fan, J. Li, J. Wang, Z. Yang, T. Shen, Y. Guo, L. Wang, M.S. Irshad, T. Mei, X. Wang, Ultrasensitive Fe 3+ ion detection based on carbon quantum dot-functionalized solution-gated graphene transistors. J. Mater. Chem. C 8(14), 4685–4689 (2020)

    Article  CAS  Google Scholar 

  79. W. Alquraishi, Y. Fu, W. Qiu, J. Wang, Y. Chen, L.-A. Kong, J. Sun, Y. Gao, Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors. Org. Electron. 71, 72–78 (2019)

    Article  CAS  Google Scholar 

  80. W. Qiu, J. Sun, W. Liu, Y. Huang, Y. Chen, J. Yang, Y. Gao, Multi-gate-driven In-Ga-Zn-O memtransistors with a Sub-60 mV/decade subthreshold swing for neuromorphic and memlogic applications. Org. Electron. 84, 105810 (2020)

    Article  CAS  Google Scholar 

  81. W. Liu, J. Sun, W. Qiu, Y. Chen, Y. Huang, J. Wang, J. Yang, Sub-60 mV per decade switching in ion-gel-gated In-Sn-O transistors with a nano-thick charge trapping layer. Nanoscale 11(45), 21740–21747 (2019)

    Article  CAS  Google Scholar 

  82. J. Wang, Y. Chen, L.-A. Kong, Y. Fu, Y. Gao, J. Sun, Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Appl. Phys. Lett. 113(15), 151101 (2018)

    Article  CAS  Google Scholar 

  83. G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009)

    Article  CAS  Google Scholar 

  84. Y. Chen, J. Sun, W. Qiu, X. Wang, W. Liu, Y. Huang, G. Dai, J. Yang, Y. Gao, Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity. Appl. Phys. A 125(10), 1–7 (2019)

    Article  CAS  Google Scholar 

  85. J. Yan, Y. Chen, X. Wang, Y. Fu, J. Wang, J. Sun, G. Dai, S. Tao, Y. Gao, High-performance solar-blind SnO2 nanowire photodetectors assembled using optical tweezers. Nanoscale 11(5), 2162–2169 (2019)

    Article  CAS  Google Scholar 

  86. G. Zhou, J. Chang, H. Pu, K. Shi, S. Mao, X. Sui, R. Ren, S. Cui, J. Chen, Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 1(3), 295–302 (2016)

    Article  CAS  Google Scholar 

  87. X. Gan, H. Zhao, R. Schirhagl, X. Quan, Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochim. Acta 185(10), 478 (2018)

    Article  CAS  Google Scholar 

  88. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  89. A.K. Geim, K.S. Novoselov, The rise of grapheme, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. ed. by P. Rodgers (World Scientific, Singapore, 2010), pp. 11–19

    Google Scholar 

  90. Y. Huang, X. Dong, Y. Shi, C.M. Li, L.J. Li, P. Chen, Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2(8), 1485–1488 (2010)

    Article  CAS  Google Scholar 

  91. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  CAS  Google Scholar 

  92. H.G. Sudibya, Q. He, H. Zhang, P. Chen, Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3), 1990–1994 (2011)

    Article  CAS  Google Scholar 

  93. A. Maity, X. Sui, C.R. Tarman, H. Pu, J. Chang, G. Zhou, R. Ren, S. Mao, J. Chen, Pulse-driven capacitive lead ion detection with reduced graphene oxide field-effect transistor integrated with an analyzing device for rapid water quality monitoring. ACS Sens. 2(11), 1653–1661 (2017)

    Article  CAS  Google Scholar 

  94. K. Chen, G. Lu, J. Chang, S. Mao, K. Yu, S. Cui, J. Chen, Hg (II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 84(9), 4057–4062 (2012)

    Article  CAS  Google Scholar 

  95. C. Yu, Y. Guo, H. Liu, N. Yan, Z. Xu, G. Yu, Y. Fang, Y. Liu, Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chem. Commun. (Camb.) 49(58), 6492–6494 (2013)

    Article  CAS  Google Scholar 

  96. Y. Takagiri, T. Ikuta, K. Maehashi, Selective detection of Cu2+ ions by immobilizing Thiacalix[4]arene on graphene field-effect transistors. ACS Omega 5(1), 877–881 (2020)

    Article  CAS  Google Scholar 

  97. L. Yao, S. Gao, S. Liu, Y. Bi, R. Wang, H. Qu, Y. Wu, Y. Mao, L. Zheng, Single-atom enzyme-functionalized solution-gated graphene transistor for real-time detection of mercury ion. ACS Appl. Mater. Interfaces 12(5), 6268–6275 (2020)

    Article  CAS  Google Scholar 

  98. C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu, Q. Zou, J. Li, H. Tan, L. Liu, D. Fan, H. Zhang, Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10(33), 27631–27643 (2018)

    Article  CAS  Google Scholar 

  99. C. Liu, X. Wei, S. Hao, B. Zong, X. Chen, Z. Li, S. Mao, Label-free, fast response, and simply operated silver ion detection with a Ti3C2Tx MXene field-effect transistor. Anal. Chem. 93, 8010 (2021)

    Article  CAS  Google Scholar 

  100. Y.-P. Gao, X. Wu, K.-J. Huang, L.-L. Xing, Y.-Y. Zhang, L. Liu, Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm 19(3), 404–418 (2017)

    Article  CAS  Google Scholar 

  101. R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017)

    Article  CAS  Google Scholar 

  102. A. Nigam, N. Goel, T.N. Bhat, M.T. Rahman, S.B. Dolmanan, Q. Qiao, S. Tripathy, M. Kumar, Real time detection of Hg2+ ions using MoS2 functionalized AlGaN/GaN high electron mobility transistor for water quality monitoring. Sens. Actuators B 309, 127832 (2020)

    Article  CAS  Google Scholar 

  103. Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9(1), 190 (2020)

    Article  CAS  Google Scholar 

  104. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014)

    Article  CAS  Google Scholar 

  105. X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials (Basel) 10(6), 1012 (2020)

    Article  CAS  Google Scholar 

  106. A.S.K. Kumar, S.-J. Jiang, J.K. Warchoł, Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@ Fe3O4 nanoparticles for adsorption of Cr (VI)/Cr (III). ACS Omega 2(9), 6187 (2017)

    Article  CAS  Google Scholar 

  107. R. Gusain, N. Kumar, E. Fosso-Kankeu, S.S. Ray, Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega 4(9), 13922–13935 (2019)

    Article  CAS  Google Scholar 

  108. S. Jiang, R. Cheng, R. Ng, Y. Huang, X. Duan, Highly sensitive detection of mercury (II) ions with few-layer molybdenum disulfide. Nano Res. 8(1), 257–262 (2015)

    Article  CAS  Google Scholar 

  109. P. Li, D. Zhang, Z. Wu, Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sens. Actuators A 286, 51–58 (2019)

    Article  CAS  Google Scholar 

  110. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  CAS  Google Scholar 

  111. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5(1), 4475 (2014)

    Article  CAS  Google Scholar 

  112. W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J.S. Kim, S. Sonde, L. Tao, N. Lu, D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15(3), 1883–1890 (2015)

    Article  CAS  Google Scholar 

  113. Y. Saito, Y. Iwasa, Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano 9(3), 3192–3198 (2015)

    Article  CAS  Google Scholar 

  114. D. Xiang, C. Han, J. Wu, S. Zhong, Y. Liu, J. Lin, X.A. Zhang, W. Ping Hu, B. Ozyilmaz, A.H. Neto, A.T. Wee, W. Chen, Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6(1), 6485 (2015)

    Article  CAS  Google Scholar 

  115. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  CAS  Google Scholar 

  116. J. Qiao, L. Zhou, W. Ji, Geometric stability and electronic structure of infinite and finite phosphorus atomic chains. Chin. Phys. B 26(3), 036803 (2017)

    Article  CAS  Google Scholar 

  117. Y. Ren, F. Cheng, Ballistic transport through a strained region on monolayer phosphorene. Chin. Phys. Lett. 34(2), 027302 (2017)

    Article  Google Scholar 

  118. M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D.K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 115(3), 501–506 (2018)

    Article  CAS  Google Scholar 

  119. C. Xing, S. Chen, M. Qiu, X. Liang, Q. Liu, Q. Zou, Z. Li, Z. Xie, D. Wang, B. Dong, Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7(7), 1701510 (2018)

    Article  CAS  Google Scholar 

  120. M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P.N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25, 135–155 (2019)

    Article  CAS  Google Scholar 

  121. M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus–based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019)

    Article  CAS  Google Scholar 

  122. S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, H. Zhang, 2D V-V binary materials: status and challenges. Adv. Mater. 31(39), e1902352 (2019)

    Article  CAS  Google Scholar 

  123. Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horizons 4(6), 997–1019 (2017)

    Article  CAS  Google Scholar 

  124. W. Gu, X. Pei, Y. Cheng, C. Zhang, J. Zhang, Y. Yan, C. Ding, Y. Xian, Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens. 2(4), 576–582 (2017)

    Article  CAS  Google Scholar 

  125. J. Chang, H. Pu, S.A. Wells, K. Shi, X. Guo, G. Zhou, X. Sui, R. Ren, S. Mao, Y. Chen, Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media. Mol. Syst. Des. Eng. 4(3), 491–502 (2019)

    Article  CAS  Google Scholar 

  126. G. Zhou, H. Pu, J. Chang, X. Sui, S. Mao, J. Chen, Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure: application in arsenic detection. Sens. Actuators B 257, 214–219 (2018)

    Article  CAS  Google Scholar 

  127. H.-D. Wang, D.K. Sang, Z.-N. Guo, R. Cao, J.-L. Zhao, M.N.U. Shah, T.-J. Fan, D.-Y. Fan, H. Zhang, Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018)

    Article  CAS  Google Scholar 

  128. D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 29(45), 1903419 (2019)

    Article  CAS  Google Scholar 

  129. X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu, T. Fan, C.S. Luo, Y. Zhou, Y. Li, Z. Guo, D. Fan, H. Zhang, Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017)

    Article  CAS  Google Scholar 

  130. Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P.K. Chu, TiL4-Coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017)

    Article  CAS  Google Scholar 

  131. W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li, S. Chen, P.E. Saw, H. Zhang, Z. Bharwani, Z. Guo, Inside cover: antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy (Angew. Chem. Int. Ed. 39/2017). Angew. Chem. Int. Ed. 56(39), 11656–11656 (2017)

    Article  CAS  Google Scholar 

  132. T. Xue, S.R. Bongu, H. Huang, W. Liang, Y. Wang, F. Zhang, Z. Liu, Y. Zhang, H. Zhang, X. Cui, Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 56(51), 7041–7044 (2020)

    Article  CAS  Google Scholar 

  133. W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma, J. Ouyang, B. Qi, J. Wang, N. Xie, C. Kang, H. Zhang, O.C. Farokhzad, J.S. Kim, Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48(11), 2891–2912 (2019)

    Article  CAS  Google Scholar 

  134. S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B 226, 478–485 (2016)

    Article  CAS  Google Scholar 

  135. P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun, X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11(40), 5409–5415 (2015)

    Article  CAS  Google Scholar 

  136. D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang, H. Zhang, Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020)

    Article  CAS  Google Scholar 

  137. J.T. Mabeck, G.G. Malliaras, Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 384(2), 343–353 (2006)

    Article  CAS  Google Scholar 

  138. A.N. Sokolov, M.E. Roberts, Z. Bao, Fabrication of low-cost electronic biosensors. Mater. Today 12(9), 12–20 (2009)

    Article  Google Scholar 

  139. C. Qian, L.-A. Kong, J. Yang, Y. Gao, J. Sun, Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 110(8), 083302 (2017)

    Article  CAS  Google Scholar 

  140. L. Torsi, A. Dodabalapur, L. Sabbatini, P. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators B 67(3), 312–316 (2000)

    Article  CAS  Google Scholar 

  141. G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4(1), 1859 (2013)

    Article  CAS  Google Scholar 

  142. J. Sun, Y. Fu, Q. Wan, Organic synaptic devices for neuromorphic systems. J. Phys. D: Appl. Phys. 51(31), 314004 (2018)

    Article  CAS  Google Scholar 

  143. P.A. Bobbert, A. Sharma, S.G. Mathijssen, M. Kemerink, D.M. de Leeuw, Operational stability of organic field-effect transistors. Adv. Mater. 24(9), 1146–1158 (2012)

    Article  CAS  Google Scholar 

  144. P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012)

    Article  CAS  Google Scholar 

  145. M.D. Angione, S. Cotrone, M. Magliulo, A. Mallardi, D. Altamura, C. Giannini, N. Cioffi, L. Sabbatini, E. Fratini, P. Baglioni, Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proc. Natl. Acad. Sci. USA 109(17), 6429–6434 (2012)

    Article  CAS  Google Scholar 

  146. H.U. Khan, M.E. Roberts, W. Knoll, Z. Bao, Pentacene based organic thin film transistors as the transducer for biochemical sensing in aqueous media. Chem. Mater. 23(7), 1946–1953 (2011)

    Article  CAS  Google Scholar 

  147. O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5(1), 2954 (2014)

    Article  CAS  Google Scholar 

  148. J. Mei, D.H. Kim, A.L. Ayzner, M.F. Toney, Z. Bao, Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133(50), 20130–20133 (2011)

    Article  CAS  Google Scholar 

  149. C. Rullyani, M. Shellaiah, M. Ramesh, H.-C. Lin, C.-W. Chu, Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments. Org. Electron. 69, 275–280 (2019)

    Article  CAS  Google Scholar 

  150. P.W. Sayyad, N.N. Ingle, T. Al-Gahouari, M.M. Mahadik, G.A. Bodkhe, S.M. Shirsat, M.D. Shirsat, Selective Hg2+ sensor: rGO-blended PEDOT: PSS conducting polymer OFET. Appl. Phys. A 127(3), 1–10 (2021)

    Article  CAS  Google Scholar 

  151. Y. Wang, Z. Zhou, X. Qing, W. Zhong, Q. Liu, W. Wang, M. Li, K. Liu, D. Wang, Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 408(21), 5779–5787 (2016)

    Article  CAS  Google Scholar 

  152. T.T.K. Nguyen, H.V. Tran, T.T. Vu, S. Reisberg, V. Noel, G. Mattana, M.C. Pham, B. Piro, Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosens. Bioelectron. 127, 118–125 (2019)

    Article  CAS  Google Scholar 

  153. A. Nigam, N. Sharma, S. Tripathy, M. Kumar, Development of semiconductor based heavy metal ion sensors for water analysis: a review. Sens. Actuators A 330, 112879 (2021)

    Article  CAS  Google Scholar 

  154. T.H. Kim, J. Lee, S. Hong, Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J. Phys. Chem. C 113(45), 19393–19396 (2009)

    Article  CAS  Google Scholar 

  155. O. Synhaivska, Y. Mermoud, M. Baghernejad, I. Alshanski, M. Hurevich, S. Yitzchaik, M. Wipf, M. Calame, Detection of Cu2+ Ions with GGH peptide realized with Si-nanoribbon ISFET. Sensors (Basel) 19(18), 4022 (2019)

    Article  CAS  Google Scholar 

  156. S. Venkatesh, T. Li, X.-S. Wang, C.-C. Yeung, K. Pei, Q.-J. Sun, W. Wu, R.K. Li, M.H. Lam, P.K. Chan, Dual-gated transistor platform for on-site detection of lead ions at trace levels. Anal. Chem. 90(12), 7399–7405 (2018)

    Article  CAS  Google Scholar 

  157. M.B. Ali, R. Kalfat, H. Sfihi, J. Chovelon, H.B. Ouada, N. Jaffrezic-Renault, Sensitive cyclodextrin–polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection. Sens. Actuators B 62(3), 233–237 (2000)

    Article  CAS  Google Scholar 

  158. S.L. Wang, C.Y. Hsieh, C.R. Wu, J.C. Chen, Y.L. Wang, Highly sensitive FET sensors for cadmium detection in one drop of human serum with a hand-held device and investigation of the sensing mechanism. Biomicrofluidics 15(2), 024110 (2021)

    Article  CAS  Google Scholar 

  159. I. Lauks, P. Chan, D. Babic, The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sens. Actuator 4, 291–298 (1983)

    Article  Google Scholar 

  160. M.J. Schöning, A. Poghossian, Bio FEDs (field-effect devices): state-of-the-art and new directions. Electroanalysis 18(19–20), 1893–1900 (2006)

    Article  CAS  Google Scholar 

  161. T. Minami, Y. Sasaki, T. Minamiki, P. Koutnik, P. Anzenbacher Jr., S. Tokito, A mercury(II) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chem. Commun. (Camb.) 51(100), 17666–17668 (2015)

    Article  CAS  Google Scholar 

  162. S.S. Tatavarthi, S.-L. Wang, Y.-L. Wang, J.-C. Chen, Rapid and highly sensitive extended gate FET-based sensors for arsenite detection using a handheld device. ECS J. Solid State Sci. Technol. 9(11), 115014 (2020)

    Article  CAS  Google Scholar 

  163. S. Shahim, R. Sukesan, C.-Y. Hsieh, S.-L. Wang, Y.-L. Wang, Chromium (III) sensor using ion selective membrane immobilized on FET for ground water pollution. ECS Trans. 86(9), 33 (2018)

    Article  CAS  Google Scholar 

  164. F. Ren, S.J. Pearton, S. Pearton, F. Ren, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications (CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  165. R. Mehandru, B. Luo, B. Kang, J. Kim, F. Ren, S. Pearton, C.-C. Pan, G.-T. Chen, J.-I. Chyi, AlGaN/GaN HEMT based liquid sensors. Solid-State Electron. 48(2), 351–353 (2004)

    Article  CAS  Google Scholar 

  166. H.-T. Wang, B. Kang, T. Chancellor Jr., T. Lele, Y. Tseng, F. Ren, S. Pearton, W. Johnson, P. Rajagopal, J. Roberts, Fast electrical detection of Hg (II) ions with Al Ga N/Ga N high electron mobility transistors. Appl. Phys. Lett. 91(4), 042114 (2007)

    Article  CAS  Google Scholar 

  167. H. Wang, B. Kang, T. Chancellor Jr., T. Lele, Y. Tseng, F. Ren, S. Pearton, A. Dabiran, A. Osinsky, P. Chow, Selective detection of Hg (II) ions from Cu (II) and Pb (II) using AlGaN/GaN high electron mobility transistors. Electrochem. Solid-State Lett. 10(11), J150 (2007)

    Article  CAS  Google Scholar 

  168. K. Chen, H. Wang, B. Kang, C. Chang, Y. Wang, T. Lele, F. Ren, S. Pearton, A. Dabiran, A. Osinsky, Low Hg (II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sens. Actuators B 134(2), 386–389 (2008)

    Article  CAS  Google Scholar 

  169. M. Asadnia, M. Myers, N.D. Akhavan, K. O’Donnell, G.A. Umana-Membreno, U.K. Mishra, B. Nener, M. Baker, G. Parish, Mercury(II) selective sensors based on AlGaN/GaN transistors. Anal. Chim. Acta 943, 1–7 (2016)

    Article  CAS  Google Scholar 

  170. Y.-T. Chen, C.-Y. Hseih, I. Sarangadharan, R. Sukesan, G.-Y. Lee, J.-I. Chyi, Y.-L. Wang, Beyond the limit of ideal nernst sensitivity: ultra-high sensitivity of heavy metal ion detection with ion-selective high electron mobility transistors. ECS J. Solid State Sci. Technol. 7(9), Q176 (2018)

    Article  CAS  Google Scholar 

  171. A. Nigam, T.N. Bhat, V.S. Bhati, S.B. Dolmanan, S. Tripathy, M. Kumar, MPA-GSH functionalized AlGaN/GaN high-electron mobility transistor-based sensor for cadmium ion detection. IEEE Sens. J. 19(8), 2863–2870 (2019)

    Article  CAS  Google Scholar 

  172. A. Nigam, V.S. Bhati, T.N. Bhat, S.B. Dolmanan, S. Tripathy, M. Kumar, Sensitive and selective detection of Pb2+ ions using 2, 5-dimercapto-1, 3, 4-thiadiazole functionalized AlGaN/GaN high electron mobility transistor. IEEE Electron Device Lett. 40(12), 1976–1979 (2019)

    Article  CAS  Google Scholar 

  173. L. Zhao, X. Liu, B. Miao, Z. Gu, J. Wang, H. Peng, J. Zhang, B. Zeng, J. Li, A differential extended gate-AlGaN/GaN HEMT sensor for real-time detection of ionic pollutants. Anal. Methods 11(31), 3981–3986 (2019)

    Article  CAS  Google Scholar 

  174. S.-L. Wang, R. Sukesan, I. Sarangadharan, Y.-L. Wang, FET based heavy metal ion sensor to detect mercury ion from waste water. In: 20th international conference on solid-state sensors, actuators and microsystems & eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 1270–1273. IEEE (2019)

  175. L. Gu, S. Yang, B. Miao, Z. Gu, J. Wang, W. Sun, D. Wu, J. Li, Electrical detection of trace zinc ions with an extended gate-AlGaN/GaN high electron mobility sensor. Analyst 144(2), 663–668 (2019)

    Article  CAS  Google Scholar 

  176. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira Jr., L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim. Acta 185(4), 213 (2018)

    Article  CAS  Google Scholar 

  177. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4(2), 021306 (2017)

    Article  CAS  Google Scholar 

  178. X. Chen, C. Liu, S. Mao, Environmental analysis with 2D transition-metal dichalcogenide-based field-effect transistors. Nanomicro Lett. 12(1), 95 (2020)

    Google Scholar 

  179. R. Aswathi, K. Sandhya, Ultrasensitive and selective electrochemical sensing of Hg (II) ions in normal and sea water using solvent exfoliated MoS 2: affinity matters. J. Mater. Chem. A 6(30), 14602–14613 (2018)

    Article  CAS  Google Scholar 

  180. H. Guliga, W. Abdullah, S. Herman, Extended gate field effect transistor (EGFET) integrated readout interfacing circuit for pH sensing. In: 2nd international conference on electrical, electronics and system engineering (ICEESE), pp. 11–14 (2014)

  181. D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. Phys. Chem. Condensed Phases 70, 1807–1818 (1974)

    CAS  Google Scholar 

  182. P. Sharma, S. Gupta, R. Singh, K. Ray, S. Kothari, S. Sinha, R. Sharma, R. Mukhiya, K. Awasthi, M. Kumar, Hydrogen ion sensing characteristics of Na3BiO4–Bi2O3 mixed oxide nanostructures based EGFET pH sensor. Int. J. Hydrog. Energy 45(37), 18743–18751 (2020)

    Article  CAS  Google Scholar 

  183. D. Kumar, S. Jit, S. Sinha, R. Sharma, R. Mukhiya, Titanium nitride sensing film-based extended-gate field-effect transistor for chemical/biochemical sensing applications. J. Electrochem. Soc. 168(10), 107510 (2021)

    Article  CAS  Google Scholar 

  184. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P.K. Chu, X.F. Yu, Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61975241, 52173192) and by the Huxiang Youth Talent Program of Hunan Province (2020RC3010). J.L. Yang also thanks the support from the National Key Research and Development Program of China (No. 2017YFA0206600), the Science and Technology Innovation Program of Hunan Province (No. 2020RC4004), and the Special Funding for the Construction of Innovative Provinces in Hunan Province (No. 2020GK2024).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by GZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jia Sun.

Ethics declarations

Conflict of interest

All the authors declare they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, S., Shi, X. et al. Recent advances in field-effect transistors for heavy metal ion detection. J Mater Sci: Mater Electron 33, 15965–15991 (2022). https://doi.org/10.1007/s10854-022-08510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08510-4

Navigation