Skip to main content

Advertisement

Log in

Creep performance of phase-inhomogeneous Cu/Sn–58Bi/Cu solder joints with increasing current density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The creep performance of phase-inhomogeneous Cu/Sn–58Bi/Cu solder joints under current stressing with increasing electric current density (0 A/cm2, 5.0 × 103 A/cm2, 6.0 × 103 A/cm2, and 7.0 × 103 A/cm2) was investigated. The results show that the steady-state creep rate of solder joints increases with the increase in current density, stress, and temperature, while it is reversed for the creep lifetime. In addition, the stress exponent of the solder joint decreases linearly with the current density. The material constant in creep constitutive model and the creep activation energy of solder joint decrease with the square of current density. The stress exponent (5.68–3.26) and creep activation energy (98.77–52.04 kJ/mol) indicate that the creep mechanism is dominated by dislocation climb, and the creep mechanism of the solder joint without current stressing is controlled by self-lattice diffusion, while it is gradually replaced by dislocation pipe diffusion with increasing current density. Accordingly, a modified Norton power law creep model considering the effect of electric current stressing on material constant, stress exponent, and creep activation energy is obtained. Moreover, as the current density and temperature increase, the fracture position of solder joints transfers from the solder matrix to the interface between solder matrix and IMC layer, and the fracture mode changes from ductile fracture to ductile–brittle mixed fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes are not publicly available as they also form part of an ongoing study.

References

  1. P. Lall, D. Zhang, V. Yadav, D. Locker, Microelectron. Reliab. 62, 4 (2016)

    Article  CAS  Google Scholar 

  2. L. Yang, J.G. Ge, Y.C. Zhang, J. Dai, H.X. Liu, J.C. Xiang, J. Electron. Mater. 45, 3766 (2016)

    Article  CAS  Google Scholar 

  3. W.Y. Li, H.B. Qin, M.B. Zhou, X.P. Zhang, J. Mech. Eng. 52, 46 (2016)

    Article  CAS  Google Scholar 

  4. J. Cadek, Creep in metallic materials (Springer, Czechoslovakia, 1988)

    Google Scholar 

  5. F.Z. Xuan, S.S. Shao, Q.Q. Chen, Microelectron. Reliab. 51, 2336 (2011)

    Article  CAS  Google Scholar 

  6. G.F. Zhao, F.Q. Yang, Mater. Sci. Eng. A 591, 97 (2014)

    Article  CAS  Google Scholar 

  7. F. Su, R.H. Mao, X.Y. Wang, G.Z. Wang, H.Y. Pan, Microelectron. Reliab. 51, 1020 (2011)

    Article  CAS  Google Scholar 

  8. R. Chen, F.Q. Yang, J. Electron. Mater. 39, 2611 (2010)

    Article  CAS  Google Scholar 

  9. R. Chen, F.Q. Yang, J. Phys. D Appl. Phys. 41, 155406 (2008)

    Article  CAS  Google Scholar 

  10. X. Long, W.B. Tang, M.F. Xu, L.M. Keer, Y. Yao, J. Mater. Sci. 53, 6219 (2018)

    Article  CAS  Google Scholar 

  11. W.Y. Li, H. Jin, W. Yue, M.Y. Tan, X.P. Zhang, J. Mater. Sci. Mater. Electron. 27, 13022 (2016)

    Article  CAS  Google Scholar 

  12. W.K. Le, J.Y. Zhou, C.B. Ke, M.B. Zhou, X.P. Zhang, J. Mater. Sci. Mater. Electron. 31, 15575 (2020)

    Article  CAS  Google Scholar 

  13. L.M. Ma, Y. Zuo, F. Guo, Y.T. Shu, J. Mater. Res. 29, 2738 (2014)

    Article  CAS  Google Scholar 

  14. Y. Zuo, L.M. Ma, F. Guo, L. Qiao, Y.T. Shu, A. Lee, K.N. Subramanian, J. Electro. Mater. 43, 4395 (2014)

    Article  CAS  Google Scholar 

  15. C. Kinney, J.W. Morris, T.K. Lee, K.C. Liu, J. Xue, D. Towne, J. Electron. Mater. 38, 221 (2009)

    Article  CAS  Google Scholar 

  16. C. Kinney, T.K. Lee, K.C. Liu, J.W. Morris, J. Electron. Mater. 38, 2585 (2009)

    Article  CAS  Google Scholar 

  17. A. Rusinko, P. Varga, Acta Polytech. Hungarica 16, 185 (2019)

    Google Scholar 

  18. S.S. Shao, F.Q. Yang, F.Z. Xuan, Inter. J. Appl. Electron. Mech 40, 165 (2012)

    Google Scholar 

  19. F. Ren, J.W. Nah, K.N. Tu, B.S. Xiong, L.H. Xu, J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006)

    Article  CAS  Google Scholar 

  20. L. Yang, H.X. Liu, Y.C. Zhang, J. Electron. Mater. 47, 662 (2018)

    Article  CAS  Google Scholar 

  21. L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 538, 253 (2012)

    Article  CAS  Google Scholar 

  22. T.H. Chen, C.M. Chen, J. Mater. Res. 21, 962 (2006)

    Article  CAS  Google Scholar 

  23. F.J. Wang, L.T. Liu, D.Y. Li, M.F. Wu, J. Mater. Sci. Mater. Electron. 29, 21157 (2018)

    Article  CAS  Google Scholar 

  24. T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Database for Solder Properties with Emphasis on New Lead-Free Solders (Colorado School of Mines, Colorado, 2002)

    Google Scholar 

  25. H.B. Qin, T.H. Liu, W.Y. Li, W. Yue, D.G. Yang, Microelectron. Reliab. 115, 113995 (2020)

    Article  CAS  Google Scholar 

  26. Y. Yao, J. Fry, M.E. Fine, L.M. Keer, Acta Mater. 61, 1525 (2013)

    Article  CAS  Google Scholar 

  27. T. An, F. Qin, J.G. Li, Microelectron. Reliab. 51, 1011 (2011)

    Article  CAS  Google Scholar 

  28. V.M.F. Marques, C. Johnston, P.S. Grant, Acta Mater. 61, 2460 (2013)

    Article  CAS  Google Scholar 

  29. S. Lotfian, J.M. Molina-Aldareguia, K.E. Yazzie, J. Llorca, N. Chawla, J. Electron. Mater. 42(6), 1085–1091 (2013)

    Article  CAS  Google Scholar 

  30. H. Tanaka, L.F. Qun, O. Munekata, T. Taguchi, T. Narita, Mater. Trans. 46, 1271 (2005)

    Article  CAS  Google Scholar 

  31. Y.A. Shen, S.Q. Zhou, J.H. Li, K.N. Tu, H. Nishikawa, Mater. Des. 166, 107619 (2019)

    Article  CAS  Google Scholar 

  32. E. Cadirli, H. Kaya, A. Gumus, I. Yilmazer, J. Mater. Eng. Perform. 15, 490 (2006)

    Article  CAS  Google Scholar 

  33. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, New York, 2007)

    Book  Google Scholar 

  34. P.S. Ho, T. Kwok, Rep. Prog. Phys. 52, 301 (1989)

    Article  CAS  Google Scholar 

  35. Z. Suo, Acta Metall. Mater. 42, 3581 (1994)

    Article  CAS  Google Scholar 

  36. R.M. Niu, J. Zhang, Z.J. Wang, G. Liu, G.J. Zhang, X.D. Ding, J. Sun, Appl. Plys. A 97, 369 (2009)

    Article  CAS  Google Scholar 

  37. C.H. Pei, Z.X. Li, Q.B. Fan, X. Huang, Mater. Res. Innov. 18, 198 (2014)

    Article  CAS  Google Scholar 

  38. L.Y. Zhang, S.Q. Ou, J.N. Huang, K.N. Tu, Appl. Plys. Lett. 88, 012106 (2006)

    Article  CAS  Google Scholar 

  39. M. Meraj, N. Yedla, S. Pal, Mater. Lett. 169, 265 (2016)

    Article  CAS  Google Scholar 

  40. H.C. Huang, K.L. Lin, A.T. Wu, J. Appl. Phys. 119, 115102 (2016)

    Article  CAS  Google Scholar 

  41. B.R. Livesay, N.E. Donlin, A.K. Garrison, H.M. Harris, J.L. Hubbard, 30th Annu. Pro. Reliab. Phys. 217 (1992)

  42. X.P. Zhang, L.M. Yin, C.B. Yu, J. Mater. Sci. Mater. Electron. 19, 393 (2008)

    Article  CAS  Google Scholar 

  43. X.P. Zhang, C.B. Yu, S. Shrestha, L. Dorn, J. Mater. Sci. Mater. Electron. 18, 665 (2007)

    Article  CAS  Google Scholar 

  44. H.L. Peynolds, Creep of Two-Phase Microstructure for Microelectronic Applications (University of California, Berkeley, 1998)

    Book  Google Scholar 

  45. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005)

    Article  Google Scholar 

  46. W.Y. Li, S.S. Cao, X.P. Zhang, 17th Inter. Con. Electron. Pack. Tech. 988 (2016)

  47. W.Y. Li, X.P. Zhang, H.B. Qin, Y.W. Mai, Microelectron. Reliab. 82, 224 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Science and Technology Planning Project of Guangxi Province under Grant No. GuiKeAD20297022, National Natural Science Foundation of China under Grant Nos. 51805103 and 52065015, Natural Science Foundation of Guangxi Province under Grant No. 2021GXNSFAA075010, Director Fund Project of Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology No. 20-065-40-003Z, Self-Topic Fund of Engineering Research Center of Electronic Information Materials and Devices No. EIMD-AB202005, Science and Technology Plan Project of Liudong New District under Grant No. Liudongkegong20210106, and Innovation Project of Guangxi Graduate Education Nos. YCSW2021184 and JGY2021084.

Author information

Authors and Affiliations

Authors

Contributions

XL: Investigation, Methodology, Formal analysis, Data curation, Writing—original draft. JW: Methodology, Formal analysis, Data curation. HQ: Conceptualization, Formal analysis. SH: Writing—review & editing. WL: Conceptualization, Methodology, Formal analysis, Data curation, Writing—review & editing. SW: Conceptualization, Methodology, Writing—review & editing.

Corresponding authors

Correspondence to Wangyun Li or Song Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human tissues or animals performed by any of the authors.

Consent to participate

This research is not related to human subjects.

Consent for publication

The author assigns non-exclusive publication rights to Springer and warrants that his contribution is unique and that he possesses all necessary authority to make this grant. The author assumes responsibility for the material’s release on behalf of all co-authors. This assignment of publication rights includes the non-exclusive right to reproduce and distribute the article in any format, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or other reproductions of a similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, J., Qin, H. et al. Creep performance of phase-inhomogeneous Cu/Sn–58Bi/Cu solder joints with increasing current density. J Mater Sci: Mater Electron 33, 16167–16182 (2022). https://doi.org/10.1007/s10854-022-08507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08507-z

Navigation