Skip to main content
Log in

Influence of order–disorder effects on the optical parameters of Ag7(Si1−xGex)S5I-mixed crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The temperature behavior of fundamental absorption edge for Ag7(Si1−xGex)S5I (x = 0, 0.2, 0.4, 0.6, 0.8, 1) mixed crystals was studied in the temperature range 77–300 K. The temperature dependences of the optical pseudogap Eg* and the Urbach energy EU were analyzed in the framework of Einstein model. Monotonous non-linear decrease of Eg* and EU values in the process of Si+ 4→Ge+ 4 cationic substitution was established. The parameters of electron–phonon interaction σ, which results in the Urbach behavior of the fundamental absorption edge, were determined. The increase in temperature leads to the electron–phonon interaction weakening, which agrees well with the Dow–Redfield model. The monotonous Urbach energy increase and a similar optical pseudogap decrease indicate the absence of phase transitions within the studied temperature range. The temperature and structural disordering influence on the optical absorption in Ag7(Si1−xGex)S5I-mixed crystals were discussed. The Urbach energy in Ag7(Si1−xGex)S5I-mixed crystals is shown to be determined by the effect of the temperature related, structural, and compositional disordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.V. Dambhare, B. Butey, S.V. Moharil, J. Phys. Conf. Ser. (2021) https://doi.org/10.1088/1742-6596/1913/1/012053

    Article  Google Scholar 

  2. M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy, T. Senjyu, Metals (2020). https://doi.org/10.3390/met10121604

    Article  Google Scholar 

  3. M. Ikram, M. Rashid, A. Haider, S. Naz, J. Haider, A. Raza, M.T. Ansar, M.K. Uddin, N.M. Ali, S.S. Ahmed, M. Imran, S. Dilpazir, Q. Khan, M. Maqbool, Sustain. Mater. Technol. (2021) https://doi.org/10.1016/j.susmat.2021.e00343

    Article  Google Scholar 

  4. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq (2021) https://doi.org/10.1016/j.molliq.2021.116405

    Article  Google Scholar 

  5. M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E. MacA, B.C. Gray, T. Hauback, T.D. He, T.R. Humphries, S. Jensen, Y. Kim, M. Kojima, H.-W. Latroche, M.V. Li, J.W. Lototskyy, K.T. Makepeace, L. Møller, P. Naheed, D. Ngene, M.M. Noréus, S. Nygård, M. Orimo, L. Paskevicius, D.B. Pasquini, M.V. Ravnsbæk, T.J. Sofianos, T. Udovic, G.S. Vegge, C.J.C. Walker, C. Weidenthaler. Webb, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153548

    Article  Google Scholar 

  6. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hassanpour M. J. Mater. Sci: Mater. Electron. (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  Google Scholar 

  7. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog Energy (2022) https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  Google Scholar 

  8. E.B. Agyekum, C. Nutakor, A.M. Agwa, S. Kamel, Membranes (2022). https://doi.org/10.3390/membranes12020173

    Article  Google Scholar 

  9. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. (2021) https://doi.org/10.1111/jace.17696

    Article  Google Scholar 

  10. S.R. Yousefi., A. Sobhani, H.A. Alshamsi., M. Salavati-Niasari, RSC Adv. (2021) https://doi.org/10.1039/D0RA10288A

    Article  Google Scholar 

  11. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. (2019) https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  Google Scholar 

  12. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog Energy (2019) https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  Google Scholar 

  13. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J Nanostruct. 6, 77 (2016)

    Google Scholar 

  14. B.T. Muhammad, S. Kar, M. Stephen, W.L. Leong, Mater. Today Energy (2022) https://doi.org/10.1016/j.mtener.2021.100907

    Article  Google Scholar 

  15. H. Fu, Sol. Energy Mater. Sol. Cells (2019) https://doi.org/10.1016/j.solmat.2018.12.038

    Article  Google Scholar 

  16. T. Takayama, I. Tsuji, N. Aono, M. Harada, T. Okuda, A. Iwase, H. Kato, A. Kudo, Chem. Lett. (2017) https://doi.org/10.1246/cl.161192

    Article  Google Scholar 

  17. D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S. Ahn, Y.S. Cho, Sol. Energy Mater. Sol. Cells (2019) https://doi.org/10.1016/j.solmat.2019.109963

    Article  Google Scholar 

  18. Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Tang, B. Lin, K. Xian, B. Gao, C. An, P. Bi, W. Ma, J. Hou, Natl. Sci. Rev. (2020) https://doi.org/10.1093/nsr/nwz200

    Article  Google Scholar 

  19. E.R. Rwenyagila, J. Photoenergy (2017). https://doi.org/10.1155/2017/1656512

    Article  Google Scholar 

  20. J.A. Luceño-Sánchez, A.M. Díez-Pascual, R. Peña, Capilla, Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20040976

    Article  Google Scholar 

  21. P. Boon-on., B.A. Aragaw, C.-Y. Lee., J.-B. Shi, M.-W. Lee, RSC Adv. (2018) https://doi.org/10.1039/C8RA08734B

    Article  Google Scholar 

  22. Q. He, S. Huang, C. Wang, Q. Qiao, N. Liang, M. Xu, W. Chen, J. Zai, X. Qian, Chem. Sus Chem. (2015) https://doi.org/10.1002/cssc.201403343

    Article  Google Scholar 

  23. L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, S. Dai, Sci. China Mater. (2018) https://doi.org/10.1007/s40843-018-9272-3

    Article  Google Scholar 

  24. K.-W. Cheng, W.-T. Tsai, Y.-H. Wu, J. Power Sources (2016) https://doi.org/10.1016/j.jpowsour.2016.03.086

    Article  Google Scholar 

  25. K.-W. Cheng, J. Taiwan Inst. Chem. Eng. (2018) https://doi.org/10.1016/j.jtice.2018.03.034

    Article  Google Scholar 

  26. K.Y. Lee, K.W. Cheng, J. Mater. Sci: Mater. Electron. (2021) https://doi.org/10.1007/s10854-021-05709-9

    Article  Google Scholar 

  27. B.H. Shambharkar, A.P. Chowdhury, J. Environ. Chem. Eng. (2018) https://doi.org/10.1016/j.jece.2018.02.046

    Article  Google Scholar 

  28. W.F. Kuhs, R. Nitsche, K. Scheunemann, Mat. Res. Bull. (1979) https://doi.org/10.1016/0025-5408(79)90125-9

    Article  Google Scholar 

  29. Y. Gao, A.M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S.-H. Bo, Chem. Rev. (2020) https://doi.org/10.1021/acs.chemrev.9b00747

    Article  Google Scholar 

  30. A.R. Stamminger, B. Ziebarth, M. Mrovec, T. Hammerschmidt, R. Drautz, Chem. Mater. (2019) https://doi.org/10.1021/acs.chemmater.9b02047

    Article  Google Scholar 

  31. B.J. Morgan, Phil Trans. R A. Soc (2021) https://doi.org/10.1098/rsta.2019.0451

    Article  Google Scholar 

  32. K. Zhao, P. Qiu, X. Shi, L. Chen, Adv. Funct. Mater. (2020) https://doi.org/10.1002/adfm.201903867

    Article  Google Scholar 

  33. S. Lin, W. Li, Y. Pei, Mater. Today (2021) https://doi.org/10.1016/j.mattod.2021.01.007

    Article  Google Scholar 

  34. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. (2017) https://doi.org/10.1016/j.apt.2017.02.013

    Article  Google Scholar 

  35. Z. Zhang, K. Zhao, T.-R. Wei, P. Qiu, L. Chen, X. Shi, Energy Environ. Sci. (2020) https://doi.org/10.1039/D0EE02072A

    Article  Google Scholar 

  36. A.M. Nolan, Y. Mo, Chemistry (2019). https://doi.org/10.1016/j.chempr.2019.08.010

    Article  Google Scholar 

  37. S. Ohno, A. Banik, G.F. Dewald, M.A. Kraft, T. Krauskopf, N. Minafra, P. Till, M. Weiss, W.G. Zeier, Prog Energy (2020) https://doi.org/10.1088/2516-1083/ab73dd

    Article  Google Scholar 

  38. H.-J. Deiseroth, J. Maier, K. Weichert, V. Nickel, S.-T. Kong, C. Reiner, Z. Anorg Allg Chem. (2011) https://doi.org/10.1002/zaac.201100158

    Article  Google Scholar 

  39. B.K. Heep, K.S. Weldert, Y. Krysiak, T.W. Day, W.G. Zeie, U. Kolb, G.J. Snyder, W. Tremel, Chem. Mater. (2017) https://doi.org/10.1021/acs.chemmater.7b00767

    Article  Google Scholar 

  40. J.A. Olley, Solid State Commun (1973) https://doi.org/10.1016/0038-1098(73)90184-1

    Article  Google Scholar 

  41. E. Arushanov, S. Levcenko, N.N. Syrbu, A. Nateprov, V. Tezlevan, J.M. Merino, M. León, Phys. Stat. Sol (a) (2006) https://doi.org/10.1002/pssa.200669505

    Article  Google Scholar 

  42. M. Ledinsky, T. Schönfeldová, J. Holovský, E. Aydin, Z. Hájková, L. Landová, N. Neyková, A. Fejfar, S.De Wolf, J. Phys. Chem. Lett. (2019) https://doi.org/10.1021/acs.jpclett.9b00138

    Article  Google Scholar 

  43. T. Babuka, I.V. Kityk, O.V. Parasyuk, G. Myronchuk, O.Y. Khyzhun, A.O. Fedorchuk, M. Makowska-Janusik, J. Alloys Compd. (2015) https://doi.org/10.1016/j.jallcom.2015.02.034

    Article  Google Scholar 

  44. S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, E. Medina, Phys. Rev. B (2001) https://doi.org/10.1103/PhysRevB.64.195101

    Article  Google Scholar 

  45. M.M. Luchynets, V.I. Studenyak, V.Yu. Izai, Yu.V. Minets, I.P. Studenyak, A. Kežionis, Phase Transit. (2019) https://doi.org/10.1080/01411594.2018.1563788

    Article  Google Scholar 

  46. M. Kranjčec, I.P. Studenyak, M.V. Kurik, J. Phys. Chem. Solids (2006) https://doi.org/10.1016/j.jpcs.2005.10.184

    Article  Google Scholar 

  47. I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, S.O. Rybak, A.I. Pogodin, O.P. Kokhan, M. Kranjčec, J. Alloys Compd. (2018) https://doi.org/10.1016/j.jallcom.2017.11.144.13

    Article  Google Scholar 

  48. I.P. Studenyak, M. Kranjčec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, Solid State Ionics (2010) https://doi.org/10.1016/j.ssi.2010.09.021

    Article  Google Scholar 

  49. I.P. Studenyak, M.I. Kayla, M. Kranjčec, O.P. Kokhan, Yu.V. Minets, J. Phys. Chem. Solids (2011) https://doi.org/10.1016/j.jpcs.2011.08.012

    Article  Google Scholar 

  50. I.P. Studenyak, V.E. Ponomarev, M. Kranjčec, V.Yu. Izai, L.M. Suslikov, Phys. Solid State (2012) https://doi.org/10.1134/S1063783412060315

    Article  Google Scholar 

  51. I.P. Studenyak, V.E. Ponomarev, M. Kranjčec, V.Yu. Izai, L.M. Suslikov, J. Appl. Spectrosc. (2012) https://doi.org/10.1007/s10812-012-9567-5

    Article  Google Scholar 

  52. I.P. Studenyak, S.M. Bereznyuk, M.M. Pop, V.I. Studenyak, A.I. Pogodin, O.P. Kokhan, B. Grančič, P. Kúš (2020) https://doi.org/10.15407/spqeo23.02.186

  53. I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, A.I. Pogodin, M.Y. Filep, O.P. Kokhan, B. Grančič, P. Kúš, Ukr. J. Phys. Opt. (2018) https://doi.org/10.3116/16091833/19/4/237/2018

    Article  Google Scholar 

  54. I.P. Studenyak, M.M. Pop, I.O. Shender, A.I. Pogodin, M. Kranjcec, Ukr. J. Phys. Opt. (2021) https://doi.org/10.3116/16091833/22/4/216/2021

    Article  Google Scholar 

  55. M. Laqibi, B. Cros, S. Peytavin, M. Ribes, Solid State Ion (1987) https://doi.org/10.1016/0167-2738(87)90077-4

    Article  Google Scholar 

  56. I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, V.Yu. Izai, M.J. Filep, O.P. Kokhan, M. Kranjčec, P. Kúš, Solid State Ion (2020) https://doi.org/10.1016/j.ssi.2019.115183

    Article  Google Scholar 

  57. I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, M.J. Filep, O.P. Kokhan, P. Kúš, Y.M. Azhniuk, D.R.T. Zahn, Mater. Res. Bull. (2021) https://doi.org/10.1016/j.materresbull.2020.111116

    Article  Google Scholar 

  58. I.P. Studenyak, A.I. Pogodin, I.A. Shender, M.J. Filep, O.P. Kokhan, P. Kopčanský, SPQEO (2021) https://doi.org/10.15407/spqeo24.03.241

  59. A.I. Pogodin, I.P. Studenyak, I.A. Shender., M.M. Pop, M.J. Filep, T.O. Malakhovska, O.P. Kokhan, P. Kopčanský, T.Y. Babuka, J. Mater. Sci. (2022) https://doi.org/10.1007/s10853-022-07059-1

    Article  Google Scholar 

  60. N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Opt. Mater. (2017) https://doi.org/10.1016/j.optmat.2016.11.014

    Article  Google Scholar 

  61. I.P. Studenyak, M. Kranjcec, Gy.S. Kovacs, V.V. Panko, I.D. Desnica, A.G. Slivka, P.P. Guranich, J. Phys. Chem. Solids (1999) https://doi.org/10.1016/S0022-3697(99)00220-6

    Article  Google Scholar 

  62. J. Skaar, Phys Rev (2006). https://doi.org/10.1103/PhysRevE.73.026605

    Article  Google Scholar 

  63. H.M. Rietveld, J. Appl. Crystallogr. (1969) https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  64. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. (1999) https://doi.org/10.1107/S0021889898009856

    Article  Google Scholar 

  65. A. Altomare, M.C. Burla, M. Camalli, B. Carrozzini, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Rizzi, J. Appl. Crystallogr. (1999) https://doi.org/10.1107/S0021889898007729

    Article  Google Scholar 

  66. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. (2013) https://doi.org/10.1107/S0021889813013113

    Article  Google Scholar 

  67. K. Momma, F. Izumi, J. Appl. Crystallogr. (2011) https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  68. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter (2009) https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  69. W. Kohn, L. Sham, Phys. Rev. (1965) https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  70. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996) https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  71. D. Vanderbilt, Phys. Rev. B (1990) https://doi.org/10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  72. H. Monkhorst, J. Pack, Phys. Rev. B (1976) https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  73. F. Urbach, Phys. Rev. (1953) https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  74. J. Zhu, Y. Xia, G. Li, S. Zhou, S. Wimmer, G. Springholz, A. Pashkin, M. Helm, H. Schneider, Appl. Phys. Lett. (2019) https://doi.org/10.1063/1.5080790

    Article  Google Scholar 

  75. M.V. Kurik, Phys Stat Sol (a) (1971). https://doi.org/10.1002/pssa.2210080102

    Article  Google Scholar 

  76. I.P. Studenyak, M. Kranjčec, Gy.S. Kovács, V.V. Pan’ko, Yu.M. Azhniuk, I.D. Desnica, O.M. Borets, Yu.V. Voroshilov, Mat. Sci. Eng. B (1998) https://doi.org/10.1016/S0921-5107(97)00278-X

    Article  Google Scholar 

  77. V. Heine, J.A. Van Vechten, Phys. Rev. B (1976) https://doi.org/10.1103/PhysRevB.13.1622

    Article  Google Scholar 

  78. H. Sumi, Y. Toyozava, J. Phys. Soc. Jpn (1971) https://doi.org/10.1143/JPSJ.31.342

    Article  Google Scholar 

  79. J.D. Dow, D. Redfield, Phys. Rev. B (1972) https://doi.org/10.1103/PhysRevB.5.594

    Article  Google Scholar 

  80. R. Hoppe, Z. Kristallogr (1979) https://doi.org/10.1524/zkri.1979.150.14.23

  81. W.H. Baur, Acta Crystallogr. Sect. B Struct. Sci. (1974) https://doi.org/10.1107/S0567740874004560

    Article  Google Scholar 

  82. L.R. Murphy, T.L. Meek, A.L. Allred, L.C. Allen, J. Phys. Chem. A (2000) https://doi.org/10.1021/jp000288e

    Article  Google Scholar 

  83. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Appl. Phys. Lett. (1997) https://doi.org/10.1063/1.119226

    Article  Google Scholar 

  84. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, J. Appl. Phys. (1995) https://doi.org/10.1063/1.360167

    Article  Google Scholar 

  85. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. (1981) https://doi.org/10.1103/PhysRevLett.47.1480

    Article  Google Scholar 

  86. M. Kranjčec, I.P. Studenyak, M.V. Kurik, J. Non-Cryst Solids (2009) https://doi.org/10.1016/j.jnoncrysol.2008.03.051

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also thank the Armed Forces of Ukraine for providing security to perform this work. This work has become possible only because resilience and courage of the Ukrainian Army.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AP, MP, IS, IS, MF, TM, OK, TB, LS, and VR. The first draft of the manuscript was written by MP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Credit author statement: Supervision, Visualization, Investigation, and Writing of the original draft: AP; Visualization, Investigation, and Writing of the original draft: MP; Visualization and Investigation: IS; Supervision: IS; Data curation, Visualization, and Writing of the original draft: MF; Software and Validation: TM; Conceptualization and Methodology: OK; Investigation, Software, and Validation: TB; Writing, reviewing, & editing of the manuscript: LS; Validation and Data Curation: VR.

Corresponding author

Correspondence to A. I. Pogodin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research data policy

All data generated or analyzed during this study are included in this published article. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodin, A.I., Pop, M.M., Shender, I.A. et al. Influence of order–disorder effects on the optical parameters of Ag7(Si1−xGex)S5I-mixed crystals. J Mater Sci: Mater Electron 33, 15054–15066 (2022). https://doi.org/10.1007/s10854-022-08422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08422-3

Navigation