Skip to main content
Log in

Band structure and optical properties of low temperature modification of Ag7PS6 single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ag7PS6 single crystal were grown by directional crystallization from the melt. Grown Ag7PS6 crystallize in low temperature modification: space group P213 with cell parameters a = 10.3917 Å, Z = 4. The single crystalline sample was investigated by the means of optical ellipsometry (298 K) and spectroscopy (77–300 K). The refractive index n is characterized by increasing values (nmax at  = 1.92 eV) when approaching the optical absorption edge, and the extinction coefficient k is characterized by the presence of an anomaly in the region of the optical absorption edge. Temperature studies of the optical absorption edge have shown an exponential form of the absorption coefficient α that obeys Urbach’s rule at all temperatures. The optical pseudo-gap Eg* and the Urbach energy EU were calculated from the obtained experimental data. It is shown that Eg* and EU decrease linearly with increasing temperature Eg* = 2.13–1.92 eV and EU = 101–185 meV. The atypical behavior of the Urbach energy is associated with disordering at the microstructural level in Ag7PS6 crystals. The experimental results are accompanied by theoretical calculation using the local-density approximation with the Hubbard correction LDA+U. The calculated data are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Zakutayev, Curr. Opin. Green Sustain. Chem. (2017). https://doi.org/10.1016/j.cogsc.2017.01.002

    Article  Google Scholar 

  2. P. Mane, I.V. Bagal, H. Bae, A.N. Kadam, V. Burungale, J. Heo, S.-W. Ryu, J.-S. Ha, Int. J. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.09.146

    Article  Google Scholar 

  3. S. Kar, R. Bhatt, V. Shukla, R.K. Choubey, P. Sen, K.S. Bartwal, Solid State Commun. (2006). https://doi.org/10.1016/j.ssc.2005.11.042

    Article  Google Scholar 

  4. W.T. Hsu, Z.B. Chen, C.C. Wu, R.K. Choubey, C.W. Lan, Materials (2012). https://doi.org/10.3390/ma5020227

    Article  Google Scholar 

  5. J.C. Wu, Z.B. Chen, R.K. Choubey, C.W. Lan, Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2012.01.099

    Article  Google Scholar 

  6. C.-L. Hu, J.-G. Mao, Coord. Chem. Rev. (2015). https://doi.org/10.1016/j.ccr.2015.01.005

    Article  Google Scholar 

  7. Z.K. Heiba, M.B. Mohamed, N.G. Imam, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.06.135

    Article  Google Scholar 

  8. Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.05.013

    Article  Google Scholar 

  9. N. Sisodia, R. Trivedi, R.K. Choubey, P. Sen, P.K. Sen, S. Kar, K.S. Bartwal, Appl. Phys. A (2006). https://doi.org/10.1007/s00339-006-3627-8

    Article  Google Scholar 

  10. S. Kar, R.K. Choubey, P. Sen, G. Bhagavannarayana, K.S. Bartwal, Phys. B Condens. Matter. (2007). https://doi.org/10.1016/j.physb.2006.12.034

    Article  Google Scholar 

  11. R.K. Choubey, P. Sen, S. Kar, G. Bhagavannarayana, K.S. Bartwal, Solid State Commun. (2006). https://doi.org/10.1016/j.ssc.2006.08.019

    Article  Google Scholar 

  12. T. Chtouki, M. El Mrabet, A. Tarbi, I. Goncharova, H. Erguig, Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111294

    Article  Google Scholar 

  13. K.K. Mamta, V.N. Maurya, Singh, Coatings (2022). https://doi.org/10.3390/coatings12030405

    Article  Google Scholar 

  14. J.A. Luceño-Sánchez, A.M. Díez-Pascual, R. Peña, Capilla, Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20040976

    Article  Google Scholar 

  15. H. Fu, Sol. Energy Mater. Sol. Cells. (2019). https://doi.org/10.1016/j.solmat.2018.12.038

    Article  Google Scholar 

  16. Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. (2016). https://doi.org/10.1016/j.molstruc.2016.02.100

    Article  Google Scholar 

  17. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3222-x

    Article  Google Scholar 

  18. Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.04.020

    Article  Google Scholar 

  19. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.08.106

    Article  Google Scholar 

  20. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Inorg. Organomet. Polym. (2016). https://doi.org/10.1007/s10904-016-0367-x

    Article  Google Scholar 

  21. N.G. Imam, M.B. Mohamed, J. Mol. Struct. (2016). https://doi.org/10.1016/j.molstruc.2015.10.039

    Article  Google Scholar 

  22. N.Y. Mostafa, M.B. Mohamed, N.G. Imam, M. Alhamyani, Z.K. Heiba, Colloid Polym. Sci. (2016). https://doi.org/10.1007/s00396-015-3769-3

    Article  Google Scholar 

  23. A.A. Kareem, Adv. Compos. Lett. (2020). https://doi.org/10.1177/2633366X19894598

    Article  Google Scholar 

  24. A.A. Kareem, H.K. Rasheed, A.R. Polu, J. Reinf. Plast. Compos. (2023). https://doi.org/10.1177/07316844221138808

    Article  Google Scholar 

  25. A.A. Kareem, A.R. Polu, H.K. Rasheed, T. Alomayri, Polym. Compos. (2023). https://doi.org/10.1002/pc.27319

    Article  Google Scholar 

  26. S.I. Boldish, W.B. White, Am. Miner. (1998). https://doi.org/10.2138/am-1998-7-818

    Article  Google Scholar 

  27. H.-J. Deiseroth, J. Maier, K. Weichert, V. Nickel, S.-T. Kong, C. Reiner, Z. Anorg. Allg. Chem. (2011). https://doi.org/10.1002/zaac.201100158

    Article  Google Scholar 

  28. I. Hanghofer, M. Brinek, S.L. Eisbacher, B. Bitschnau, M. Volck, V. Hennige, I. Hanzu, D. Rettenwander, H.M.R. Wilkening, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP00664H

    Article  Google Scholar 

  29. Y. Fan, G. Wang, R. Wang, B. Zhang, X. Shen, P. Jiang, X. Zhang, H. Gu, X. Lu, X. Zhou, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153665

    Article  Google Scholar 

  30. E. Gaudin, V. Petricek, F. Boucher, F. Taulelle, M. Evain, Acta Crystallogr. B (2000). https://doi.org/10.1107/s0108768100010260

    Article  Google Scholar 

  31. W.F. Kuhs, R. Nitsche, K. Scheunemann, Mater. Res. Bull. (1979). https://doi.org/10.1016/0025-5408(79)90125-9

    Article  Google Scholar 

  32. T. Nilges, A. Pfitzner, Z. Kristallogr. Cryst. Mater. (2005). https://doi.org/10.1524/zkri.220.2.281.59142

    Article  Google Scholar 

  33. J.K. Lee, B. Ryu, S. Park, J.H. Son, J. Park, J. Jang, M.-W. Oh, S.D. Park, Acta Mater. (2022). https://doi.org/10.1016/j.actamat.2021.117443

    Article  Google Scholar 

  34. O. Cherniushok, T. Parashchuk, J. Tobola, S.D.N. Luu, A. Pogodin, O. Kokhan, I. Studenyak, I. Barchiy, M. Piasecki, K.T. .Wojciechowski, ACS Appl. Mater. Interfaces. (2021). https://doi.org/10.1021/acsami.1c11193

    Article  Google Scholar 

  35. S. Elyamny, N.G. Imam, G. Aquilanti, H. Cabrera, A. El-Hady, B. Kashyout, J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.03.101

    Article  Google Scholar 

  36. N. Ren, Z. Liu, Q. Wang, Phys. Lett. A (2015). https://doi.org/10.1016/j.physleta.2015.02.023

    Article  Google Scholar 

  37. A.I. Pogodin, M.J. Filep, T.O. Malakhovska, V.V. Vakulchak, V. Komanicky, V.Y. Izai, Y.I. Studenyak, Y.P. Zhukova, I.O. Shender, V.S. Bilanych, O.P. Kokhan, P. Kúš, J. Phys. Chem. Solids. (2022). https://doi.org/10.1016/j.jpcs.2022.111042

    Article  Google Scholar 

  38. A.I. Kashuba, B. Andriyevsky, I.V. Semkiv, L. Bychto, R. Yu Petrus, M. Maliński, H.A. Ilchuk, Å. Chrobak, M. Piasecki, Opt. Mater. X. (2022). https://doi.org/10.1016/j.omx.2022.100180

    Article  Google Scholar 

  39. Z. Zhang, Y. Tian, G. Liu, M. Wu, H. He, X. Yao, J. Electrochem. Soc. (2022). https://doi.org/10.1103/PhysRevMaterials.6.083601

    Article  Google Scholar 

  40. I. Semkiv, H. Ilchuk, M. Pawlowski, V. Kusnezh, Opto-Electron. Rev. (2017). https://doi.org/10.1016/j.opelre.2017.04.002

    Article  Google Scholar 

  41. A. Morscher, B.B. Duff, G. Han, L.M. Daniels, Y. Dang, M. Zanella, M.J. Rosseinsky, J. Am. Chem. Soc. (2022). https://doi.org/10.1021/jacs.2c09863

    Article  Google Scholar 

  42. Y. Sun, B. Ouyang, Y. Wang, Y. Zhang, S. Sun, Z. Cai, V. Lacivita, Y. Guo, G. Ceder, Matter (2022). https://doi.org/10.1016/j.matt.2022.08.029

    Article  Google Scholar 

  43. T. Bernges, R. Hanus, B. Wankmiller, K. Imasato, S. Lin, M. Ghidiu, M. Gerlitz, M. Peterlechner, S. Graham, G. Hautier, Y. Pei, M.R. Hansen, G. Wilde, G.J. .Snyder, J. George, M.T. Agne, W.G. Zeier, Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200717

    Article  Google Scholar 

  44. J.Y. Liu, L. Chen, L.M. Wu, Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-30716-7

    Article  Google Scholar 

  45. E. Deligoz, H. Ozisik, E. Bolen, Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.109689

    Article  Google Scholar 

  46. C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Nano Energy. (2021). https://doi.org/10.1016/j.nanoen.2021.105858

    Article  Google Scholar 

  47. X. Shen, C.-C. Yang, Y. Liu, G. Wang, H. Tan, Y.-H. Tung, G. Wang, X. Lu, J. He, X. Zhou, ACS Appl. Mater. Inter. (2019). https://doi.org/10.1021/acsami.8b19819

    Article  Google Scholar 

  48. S. Lin, W. Li, Y. Pei, Mater. Today. (2021). https://doi.org/10.1016/j.mattod.2021.01.007

    Article  Google Scholar 

  49. W. Li, S. Lin, M. Weiss, Z. Chen, J. Li, Y. Xu, W.G. Zeier, Y. Pei, Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800030

    Article  Google Scholar 

  50. B.K. Heep, K.S. Weldert, Y. Krysiak, T.W. Day, W.G. Zeier, U. Kolb, G.J. Snyder, W. Tremel, Chem. Mater. (2017). https://doi.org/10.1021/acs.chemmater.7b00767

    Article  Google Scholar 

  51. C. Yang, Y. Luo, X. Li, J. Cui, RSC Adv. (2021). https://doi.org/10.1039/D0RA10454J

    Article  Google Scholar 

  52. I.P. Studenyak, M.M. Luchynets, V.Y. Izai, A.I. Pogodin, O.P. Kokhan, Y.M. Azhniuk, D.R.T. Zahn, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.12.214

    Article  Google Scholar 

  53. P. Boon-on, B.A. Aragaw, C.-Y. Lee, J.-B. Shi, M.-W. Lee, RSC Adv. (2018). https://doi.org/10.1039/C8RA08734B

    Article  Google Scholar 

  54. L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, S. Dai, Sci. China Mater. (2018). https://doi.org/10.1007/s40843-018-9272-3

    Article  Google Scholar 

  55. A.I. Pogodin, M.M. Pop, I.O. Shender, I.P. Studenyak, M.J. Filep, T.O. Malakhovska, P. Kopčanský, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08974-4

    Article  Google Scholar 

  56. I.P. Studenyak, V.Y. Izai, V.I. Studenyak, A.I. Pogodin, M.Y. Filep, O.P. Kokhan, B. Grančič, P. Kúš, Ukr. J. Phys. Opt. (2018). https://doi.org/10.3116/16091833/19/4/237/2018

    Article  Google Scholar 

  57. L. Gao, M.-H. Lee, J. Zhang, New. J. Chem. (2019). https://doi.org/10.1039/C8NJ06270F

    Article  Google Scholar 

  58. H. Andrae, R. Blachnik, J. Alloys Compd. (1992). https://doi.org/10.1016/0925-8388(92)90709-I

    Article  Google Scholar 

  59. A.I. Pogodin, M.J. Filep, V.Y. Izai, O.P. Kokhan, P. Kúš, J. Phys. Chem. Solids. (2022). https://doi.org/10.1016/j.jpcs.2022.110828

    Article  Google Scholar 

  60. R.F. Mueller, Mineralogy. encyclopedia of earth science (Springer, Boston, 1981), pp.344–348

    Google Scholar 

  61. D. Bletskan, V. Vakulchak, V. Lisý, I. Studenyak, AIP Conf. Proc. (2021). https://doi.org/10.1063/5.0060902

    Article  Google Scholar 

  62. P. Hohenberg, W. Kohn, Phys. Rev. (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  63. W. Kohn, L.J. Sham, Phys. Rev. (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  64. A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J.I. Cerdá, F. Corsetti, R. Cuadrado, V. Dikan, J. Ferrer, J. Gale, P. García-Fernández, V.M. García-Suárez, S. García, G. Huhs, S. Illera, R. Korytár, P. Koval, I. Lebedeva, L. Lin, P. López-Tarifa, S.G. Mayo, S. Mohr, P. Ordejón, A. Postnikov, Y. Pouillon, M. Pruneda, R. Robles, D. Sánchez-Portal, J.M. Soler, R. Ullah, V.W. Yu, J. Junquera, J. Chem. Phys. (2020). https://doi.org/10.1063/5.0005077

    Article  Google Scholar 

  65. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter. (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  Google Scholar 

  66. B. Himmetoglu, A. Floris, S. Gironcoli, M. Cococcioni, Int. J. Quantum Chem. (2014). https://doi.org/10.1002/qua.24521

    Article  Google Scholar 

  67. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. (1980). https://doi.org/10.1103/PhysRevLett.45.566

    Article  Google Scholar 

  68. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter. (1997). https://doi.org/10.1088/0953-8984/9/4/002

    Article  Google Scholar 

  69. A. Pogodin, T. Malakhovska, M. Filep, O. Kokhan, I. Shender, Y. Studenyak, Y. Zhukova, Ukr. J. Phys. Opt. (2022). https://doi.org/10.3116/16091833/23/2/77/2022

    Article  Google Scholar 

  70. J.I. Pankove, D.A. Kiewit, J. Electrochem. Soc. (1972). https://doi.org/10.1149/1.2404256

    Article  Google Scholar 

  71. M. Nowak, P. Szperlich, Å. Bober, J. Szala, G. Moskal, D. Stróż, Ultrason. Sonochem. (2008). https://doi.org/10.1016/j.ultsonch.2007.09.003

    Article  Google Scholar 

  72. I.P. Studenyak, M. Kranjcec, G.S. Kovacs, V.V. Panko, I.D. Desnica, A.G. Slivka, P.P. Guranich, J. Phys. Chem. Solids. (1999). https://doi.org/10.1016/S0022-3697(99)00220-6

    Article  Google Scholar 

  73. O.V. Kovalev, in Representations of the crystallographic space groups. ed. by H.T. By, D.M. Stokes, Hatch (Gordon & Breach, London, 1993), p.349

    Google Scholar 

  74. C. Howlader, M. Hasan, A. Zakhidov, M.Y. Chen, Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.110445

    Article  Google Scholar 

  75. F.F. Muhammad, M.Y. Yahya, F. Aziz, M.A. Rasheed, K. Sulaiman, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7347-y

    Article  Google Scholar 

  76. S.H. Wemple, M.D. Domenico, Phys. Rev. B (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  77. M.S. Tubbs, Phys. Stat. Sol. B (1970). https://doi.org/10.1002/pssb.19700410164

    Article  Google Scholar 

  78. J. Skaar, Phys Rev. (2006). https://doi.org/10.1103/physreve.73.026605

    Article  Google Scholar 

  79. F. Urbach, Phys. Rev. (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  80. S. Gutzov, S. Berendts, M. Lerch, C. Geffert, A. Börger, K.D. Becker, Phys. Chem. Chem. Phys. (2009). https://doi.org/10.1039/B808771G

    Article  Google Scholar 

  81. M.V. Kurik, Stat. Sol. A (1971). https://doi.org/10.5923/j.optics.20140403.02

    Article  Google Scholar 

  82. O. Wada, D. Ramachari, C.-S. Yang, C.-L. Pan, J. Non Cryst. Solids. (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121135

    Article  Google Scholar 

  83. X. Han, J. Shen, P. Yin, S. Hu, D. Bi, Opt. Commun. (2014). https://doi.org/10.1016/j.optcom.2013.12.014

    Article  Google Scholar 

  84. S. Kasap, C. Koughia, J. Singh, H. Ruda, in OʼLeary in springer handbook of electronic and photonic materials. ed. by B.S. Kasap, P. Capper (Springer, Boston, 2006), p.1407

    Google Scholar 

  85. I.P. Studenyak, M. Kranjčec, G.S. Kovács, V.V. Pan’ko, Y.M. Azhniuk, I.D. Desnica, O.M. Borets, Y.V. Voroshilov, Mater. Sci. Eng. B (1998). https://doi.org/10.1016/S0921-5107(97)00278-X

    Article  Google Scholar 

  86. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Appl. Phys. Lett. (1997). https://doi.org/10.1063/1.119226

    Article  Google Scholar 

  87. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, J. Appl. Phys. (1995). https://doi.org/10.1063/1.360167

    Article  Google Scholar 

  88. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. (1981). https://doi.org/10.1103/physrevlett.47.1480

    Article  Google Scholar 

  89. J. Ruiz-Fuertes, D. Errandonea, F.J. Manjón, D. Martínez-García, A. Segura, V.V. Ursaki, I.M. Tiginyanu, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2887992

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also thank the Armed Forces of Ukraine for providing security to perform this work. This work has become possible only because resilience and courage of the Ukrainian Army.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AP, MP, IS, MF, TM, VV, OK, DB, VR, VL and JT. The first draft of the manuscript was written by MP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Supervision, Visualization, Investigation, Writing—original draft: Artem Pogodin; Visualization, Investigation, Writing—original draft: Mykhailo Pop; Visualization, Investigation: Iryna Shender; Data curation, Visualization, Writing—original draft: Mykhailo Filep; Software, Validation: Tetyana Malakhovska; Investigation, Software, Validation: Vasyl Vakulchak; Conceptualization, Methodology: Oleksandr Kokhan; Visualization, Investigation: Dmytro Bletskan; Validation, Data Curation: Vasyl Rubish; Supervision: Vladimír Lisý; Writing—review & editing: Jana Tóthová.

Corresponding author

Correspondence to Artem I. Pogodin.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodin, A.I., Pop, M.M., Shender, I.A. et al. Band structure and optical properties of low temperature modification of Ag7PS6 single crystal. J Mater Sci: Mater Electron 34, 1508 (2023). https://doi.org/10.1007/s10854-023-10916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10916-7

Navigation