Skip to main content
Log in

Chemical synthesis of orthorhombic Ag8SnS6/zinc oxide nanorods photoanodes for photoelectrochemical salt-water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Orthorhombic Ag8SnS6/ZnO nanorods grown onto indium-tin-oxide conductive glass substrates were prepared using a simple chemical synthesis method for the application in photoelectrochemical salt-water splitting. For the deposition of ZnO nanorods on substrates, the concentrations of ammonium hydroxide in the solution bath were changed to obtain the pristine ZnO nanorods with good morphology for the growth of silver-tin-sulfide layer. Pristine ZnO nanorods prepared with concentration of 5.5 M for ammonium hydroxide in the reaction solution has the highest intensity of (0 0 2) crystal plane, which indicates that pristine ZnO nanorods sample has good morphology for the preparation of the Ag8SnS6 core/shell photoanode. From the results of X-ray diffraction patterns and energy-dispersive X-ray spectroscopy analysis for samples, with decreasing [Ag]/[Ag + Sn] molar ratio in the reaction solution, crystal phases of samples changed from Ag2S/SnS/ZnO, orthorhombic Ag8SnS6/ZnO to Ag8SnS6/SnS/ZnO mixing phases. The values of sample’s energy band gap were located in the range of 1.36 ~ 1.79 eV. At the [Ag]/[Ag + Sn] molar ratio of 0.4 in the reaction solution, the maximum photoelectrochemical activity of 0.79 mA cm−2 for samples was obtained with the external bias set at + 1.5 V vs. an Ag/AgCl electrode in 0.5 M NaCl aqueous solution. The photoelectrochemical activity of sample could remain at least 2000 s without any decay in the salt-water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. A. Kudo, Catal. Surv. Asia 7, 31 (2003)

    Article  CAS  Google Scholar 

  3. K.W. Cheng, C.H. Yeh, Int. J. Hydrog. Energy 37, 13638 (2012)

    Article  CAS  Google Scholar 

  4. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  5. J. Li, N. Wu, Catal. Sci. Technol. 5, 1360 (2015)

    Article  CAS  Google Scholar 

  6. S. Ichikawa, Int. J. Hydrog. Energy 22, 675 (1997)

    Article  CAS  Google Scholar 

  7. K.W. Cheng, Y.H. Wu, T.H. Chiu, J. Power Sources 307, 329 (2016)

    Article  CAS  Google Scholar 

  8. K.W. Cheng, S.W. Hong, ACS Appl. Mater. & Interfaces 10, 22130 (2018)

    Article  CAS  Google Scholar 

  9. T. Ipeksac, F. Kaya, C. Kaya, Mater. Lett. 100, 11 (2013)

    Article  CAS  Google Scholar 

  10. M. Kokotov, G. Hodes, J. Mater. Chem. 19, 3847 (2009)

    Article  CAS  Google Scholar 

  11. Y. Zhang, X. Zhong, D. Zhang, W. Duan, X. Li, S. Zheng, J. Wang, Sol. Energy 166, 371 (2018)

    Article  CAS  Google Scholar 

  12. Y. Hu, X. Yan, Y. Gu, X. Chen, Z. Bai, Z. Kang, F. Long, Y. Zhang, Appl. Surf. Sci. 339, 122 (2015)

    Article  CAS  Google Scholar 

  13. D. Kumar, R. Bai, S. Chaudhary, D.K. Pandya, Mater. Today Energy 6, 105 (2017)

    Article  CAS  Google Scholar 

  14. Y.C. Chen, K.H. Yang, C.Y. Huang, Z.J. Wu, Y.K. Hsu, Chem. Eng. J. 368, 746 (2019)

    Article  CAS  Google Scholar 

  15. F.N.I. Sari, C. Lin, J.M. Ting, Chem. Eng. J. 368, 784 (2019)

    Article  CAS  Google Scholar 

  16. M.E. Purbarani, F.N.I. Sari, J.M. Ting, Surf. Coat. Technol. 378, 125073 (2019)

    Article  CAS  Google Scholar 

  17. C.R. Ke, J.S. Guo, Y.H. Su, J.M. Ting, Nanotechnology 27, 435405 (2016)

    Article  CAS  Google Scholar 

  18. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 9, 233 (2009)

    Google Scholar 

  19. Q. Ma, X. Peng, M. Zhu, X. Wang, Y. Wang, Y. Gao, H. Wang, J. Phys. D 52, 125503 (2018)

    Article  CAS  Google Scholar 

  20. A. Brayek, S. Chaguetmi, M. Ghoul, I.B. Assaker, A. Souissi, L. Mouton, P. Beaunier, S. Nowak, F. Mammeri, R. Chtourou, S. Ammar, RSC. Adv. 6, 30919 (2016)

    Article  CAS  Google Scholar 

  21. Y. Lai, L. Chi, Z. Li, Int. J. Hydrog. Energy 43, 22046 (2018)

    Article  CAS  Google Scholar 

  22. Y.C. Liang, C.C. Chung, Y.J. Lo, C.C. Wang, Materials 9, 1014 (2016)

    Article  CAS  Google Scholar 

  23. L.Y. Yeh, K.W. Cheng, J. Power Sources 275, 750 (2015)

    Article  CAS  Google Scholar 

  24. K.W. Cheng, W.T. Tsai, Y.H. Wu, J. Power Sources 317, 81 (2016)

    Article  CAS  Google Scholar 

  25. K.W. Cheng, J. Taiwan Inst. Chem. Eng. 87, 182 (2018)

    Article  CAS  Google Scholar 

  26. D.W. Chen, K.Y. Lee, M.H. Tsai, T.Y. Lin, C.H. Chen, K.W. Cheng, Nanomaterials 9, 713 (2019)

    Article  CAS  Google Scholar 

  27. Y. Tak, K. Yong, J. Phys. Chem. B 109, 19263 (2005)

    Article  CAS  Google Scholar 

  28. A.F. Holleman, E. Wiberg, Inorganic Chemistry (Academic Press, San Diego, 2001).

    Google Scholar 

  29. D.R. Lide, H.P.R. Erederikse, CRC Handbook of Chemistry and Physics, 75th edn. (Boca Raton, CRC Press Inc, 1994).

    Google Scholar 

  30. W. Feng, L. Lin, H. Li, B. Chi, J. Pu, J. Li, Int. J. Hydrog. Energy 42, 3938 (2017)

    Article  CAS  Google Scholar 

  31. V. Gurylev, C.Y. Su, T.P. Perng, Appl. Surf. Sci. 411, 279 (2017)

    Article  CAS  Google Scholar 

  32. H. Feng, J. Wang, W. Fan, C. Zhang, Mater. Lett. 126, 67 (2014)

    Article  CAS  Google Scholar 

  33. B. Thangaraju, P. Kaliannan, J. Phys. D 33, 1054 (2000)

    Article  CAS  Google Scholar 

  34. B. Klahr, S. Gimenez, F. Fabregt-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 134, 4294 (2012)

    Article  CAS  Google Scholar 

  35. P. Dias, L. Andrade, A. Mendes, Nano Energy 38, 218 (2017)

    Article  CAS  Google Scholar 

  36. J. Kamimura, P. Bogdanoff, F.F. Abdi, J. Lähnemann, R. van de Krol, H. Riechert, L. Geelhaar, J. Phys. Chem. C 121, 12540 (2017)

    Article  CAS  Google Scholar 

  37. A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications (Springer, Heidelberg, 2014).

    Book  Google Scholar 

  38. F. Tezcan, A. Mahmood, G. Kardas, J. Mater. Sci.: Mater. Electron. 29, 9547 (2018)

    CAS  Google Scholar 

  39. S. Sadhasivam, N. Anbarasan, M. Mukilin, P. Manivel, K. Jeganathan, Int. J. Hydrog. Energy 45, 30080 (2020)

    Article  CAS  Google Scholar 

  40. B.J. Rani, A. Anusyia, M. Praveenkumar, S. Ravichandran, R.K. Guduru, G. Ravi, R. Yuvakkumar, J. Mater. Sci.: Mater. Electron. 30, 731 (2019)

    CAS  Google Scholar 

  41. B. Yadian, Y. Rao, B. Zhu, Z. Liu, Q. Liu, C.L. Gan, X. Chen, Y. Huang, Mater. Res. Bull. 96, 503 (2017)

    Article  CAS  Google Scholar 

  42. Y. Zhang, T. Feng, X. Zhao, Q. Pei, T. Hao, W. Zhang, S. Wu, H. Mao, X.M. Song, J. Alloys Compd. 685, 581 (2016)

    Article  CAS  Google Scholar 

  43. W. Hu, N.D. Quang, S. Majumder, E. Park, D. Kim, H.S. Choi, H.S. Chang, J. Alloys Comp. 819, 153349 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Ministry of Science and Technology of Taiwan, under Grants of 106-2628-E-182-002-MY3(NERPD2G0293), 109-2221-E-182-001 (NERPD2K0021) and Chang Gung Memorial Hospital under Grant No. BMRP948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong-Wei Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KY., Cheng, KW. Chemical synthesis of orthorhombic Ag8SnS6/zinc oxide nanorods photoanodes for photoelectrochemical salt-water splitting. J Mater Sci: Mater Electron 32, 10532–10548 (2021). https://doi.org/10.1007/s10854-021-05709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05709-9

Navigation