Skip to main content
Log in

Shear performance of microscale ball grid array structure Sn–3.0Ag–0.5Cu solder joints with different surface finish combinations under electro-thermo-mechanical coupled loads

  • Original Research
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The shear performance and fracture behavior of microscale ball grid array structure Sn–3.0Ag–0.5Cu solder joints with different substrate surface finishes (Cu with organic solderability preservatives and electroless Ni/immersion Au) combinations under electro-thermo-mechanical (ETM) coupled loads with increasing current density (from 1.0 × 103 to 6.0 × 103 A/cm2) were systematically investigated by experimental characterization, theoretical analysis, and finite element simulation. The results reveal that the shear strength varies slightly with different surface finish combinations, initially increasing and then decreasing as the current density is increased. Moreover, the increase in current density shifts the fracture location from the solder matrix to the interface between solder and intermetallic compound (IMC) layer, resulting in a ductile-to-brittle transition. The interfacial fracture is triggered by electric current crowding at the groove of the IMC layer and driven by the mismatch strain at the solder/IMC layer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes are not publicly available as they also form part of an ongoing study.

References

  1. J.W. Nah, J.O. Suh, K.N. Tu, J. Appl. Phys. 98, 013715 (2005)

    Article  Google Scholar 

  2. K.N. Tu, Y.X. Liu, M.L. Li, Appl. Phys. Rev. 4, 011101 (2017)

    Article  Google Scholar 

  3. W.Y. Li, H. Jin, W. Yue, M.Y. Tan, X.P. Zhang, J. Mater. Sci.: Mater. Electron. 27, 13022 (2016)

    CAS  Google Scholar 

  4. W.K. Le, J.Y. Zhou, C.B. Ke, M.B. Zhou, X.P. Zhang, J. Mater. Sci.: Mater. Electron. 31, 15575 (2020)

    CAS  Google Scholar 

  5. C. Kinney, T.K. Lee, K.C. Liu, J.W. Morris, J. Electron. Mater. 38, 2585 (2009)

    Article  CAS  Google Scholar 

  6. C. Kinney, J.W. Morris Jr., T.K. Lee, K.C. Liu, J. Xue, D. Towne, J. Electron. Mater. 38, 221 (2009)

    Article  CAS  Google Scholar 

  7. D.D. Maio, C. Murdoch, O. Thomas, C. Hunt, The degradation of solder joints under high current density and low-cycle fatigue. 11th International Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 1 (2010)

  8. Y. Zuo, L.M. Ma, S.H. Liu, Y.T. Shu, F. Guo, J. Electron. Mater. 44, 597 (2015)

    Article  CAS  Google Scholar 

  9. Y.F. Jiao, K. Jermsittiparsert, A.Y. Krasnopevtsev, Q.A. Yousif, M. Mater, Res. Express 6, 106302 (2019)

    Article  CAS  Google Scholar 

  10. W.Y. Li, H.B. Qin, M.B. Zhou, X.P. Zhang, The influence of imposed electric current on the tensile fracture behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu solder joints. 15th International Conference on Electronic Packaging Technology (ICEPT), 1030 (2014)

  11. W.Y. Li, H.B. Qin, M.B. Zhou, X.P. Zhang, Chin. J. Mech. Eng. 52, 46 (2016)

    Article  Google Scholar 

  12. X. M. Li, J. Gui, W.Y. Li, H. D. Yan, H.B. Qin, J.Q. Huang, D.G. Yang, Tensile performance of line-type microscale Cu/Sn–58Bi/Cu joints under electro-thermo-mechanical coupled loads. 21th International Conference on Electronic Packaging Technology (ICEPT), 1 (2020)

  13. W.K. Le, X. Ning, C.B. Ke, M.B. Zhou, X.P. Zhang, J. Mater. Sci.: Mater. Electron. 30, 15184 (2019)

    CAS  Google Scholar 

  14. W.K. Le, X. Ning, J.Q. Huang, M.B. Zhou, X.P. Zhang, 19th IEEE International Conference on Electronic Packaging Technology (ICEPT), 610 (2018)

  15. W.K. Le, T. Sun, J.Y. Zhou, M.B. Zhou, X.P. Zhang, Effect of loading rate on the shear performance and fracture behavior of micro-scale BGA structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electromechanical loads. 20th International Conference on Electronic Packaging Technology (ICEPT), 1 (2019)

  16. H.Z. Wang, X.W. Hu, X.X. Jiang, Mater. Charact. 163, 110287 (2020)

    Article  CAS  Google Scholar 

  17. H.Z. Wang, X.W. Hu, X.X. Jiang, Y.L. Li, J. Manuf. Process. 62, 291 (2021)

    Article  Google Scholar 

  18. J. Shen, Z.M. Cao, D.J. Zhai, M.L. Zhao, P.P. He, Microelectron. Reliab. 54, 252 (2014)

    Article  CAS  Google Scholar 

  19. S. Fuller, M. Sheikh, G. Baty, C.U. Kim, T.K. Lee, J. Mater. Sci.: Mater. Electron. 32, 2853 (2021)

    CAS  Google Scholar 

  20. Y. Liu, F.L. Sun, H. Zhang, T. Xin, C.A. Yuan, G.Q. Zhang, Microelectron. Reliab. 55, 1234 (2015)

    Article  CAS  Google Scholar 

  21. T. You, Y. Kim, W. Jung, J. Moon, H. Choe, J. Alloys Compd. 486, 242 (2009)

    Article  CAS  Google Scholar 

  22. J.M. Kim, M.H. Jeong, S. Yoo, C.W. Lee, Y.B. Park, Microelectron. Eng. 89, 55 (2012)

    Article  CAS  Google Scholar 

  23. W.Y. Li, X.P. Zhang, H.B. Qin, Y.-W. Mai, Microelectron. Reliab. 82, 224 (2018)

    Article  CAS  Google Scholar 

  24. T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Database for solder properties with emphasis on new lead-free solders. NIST Spec. Publ. (2002)

  25. T. An, F. Qin, J.G. Li, Microelectron. Reliab. 51, 1011 (2011)

    Article  CAS  Google Scholar 

  26. H.B. Qin, X.P. Zhang, M.B. Zhou, J.B. Zeng, Y.-W. Mai, Mater. Sci. Eng.: A 617, 14 (2014)

    Article  CAS  Google Scholar 

  27. K.S. Kim, S.H. Huh, K. Suganuma, Microelectron. Reliab. 43, 259 (2003)

    Article  CAS  Google Scholar 

  28. R.Y. Tian, C.J. Hang, Y.H. Tian, J.Y. Feng, J. Alloys Compd. 777, 463 (2019)

    Article  CAS  Google Scholar 

  29. V.M.F. Marques, C. Johnston, P.S. Grant, Acta Mater. 61, 2460 (2013)

    Article  CAS  Google Scholar 

  30. C.L. Liang, K.L. Lin, Mater. Charact. 145, 545 (2018)

    Article  CAS  Google Scholar 

  31. Y.H. Liao, C.L. Liang, K.L. Lin, A.T. Wu, AIP Adv. 5, 127210 (2015)

    Article  Google Scholar 

  32. P.C. Liang, K.L. Lin, J. Alloys Compd. 722, 690 (2017)

    Article  CAS  Google Scholar 

  33. H.C. Huang, K.L. Lin, A.T. Wu, J. Appl. Phys. 119, 115102 (2016)

    Article  Google Scholar 

  34. J.R. Lloyd, J. Phys. D: Appl. Phys. 32, R109 (1999)

    Article  CAS  Google Scholar 

  35. S.W. Chen, C.M. Chen, W.C. Liu, J. Electron. Mater. 27, 1193 (1998)

    Article  CAS  Google Scholar 

  36. L.H. Xu, J.H.L. Pang, K.N. Tu, Appl. Phys. Lett. 89, 221909 (2006)

    Article  Google Scholar 

  37. B. Chao, S.H. Chae, X.F. Zhang, K.H. Lu, J. Im, P.S. Ho, Acta Mater. 55, 2805 (2007)

    Article  CAS  Google Scholar 

  38. G.I. Taylor, Proc. R. Soc. London 145, 362 (1934)

    CAS  Google Scholar 

  39. W.J. Poole, M.F. Ashby, N.A. Fleck, Scr. Mater. 34, 559 (1996)

    Article  CAS  Google Scholar 

  40. P. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng.: A 529, 62 (2011)

    Article  CAS  Google Scholar 

  41. H.J. McQueen, W. Blum, Mater. Sci. Eng.: A 290, 95 (2000)

    Article  Google Scholar 

  42. J.W. Elmer, E.D. Specht, J. Electron. Mater. 40, 201 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China under Grant No. 51805103, Natural Science Foundation of Guangxi Province under Grant No. 2018GXNSFBA281065, Science and Technology Planning Project of Guangxi Province under Grant No. GuiKeAD18281021, Director Fund Project of Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology No. 19-050-44-003Z, Self–Topic Fund of Engineering Research Center of Electronic Information Materials and Devices Nos. EIMD–AA202007 and EIMD–AB202005, and Innovation Project of Guangxi Graduate Education Nos. YCBZ2021068 and JGY2021084.

Author information

Authors and Affiliations

Authors

Contributions

BW contributed to methodology, data curation, formal analysis, and writing and preparation of the original draft. WL contributed to conceptualization, methodology, formal analysis, writing, reviewing, and editing of the manuscript, and funding acquisition. KP contributed to funding acquisition, conceptualization, and writing, reviewing, and editing of the manuscript.

Corresponding authors

Correspondence to Wangyun Li or Kailin Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human tissues or animals performed by any of the authors.

Consent to participate

This research is not related to human subjects.

Consent for publication

The author assigns non-exclusive publication rights to Springer and warrants that his contribution is unique and that he possesses all necessary authority to make this grant. The author assumes responsibility for the material’s release on behalf of all co-authors. This assignment of publication rights includes the non-exclusive right to reproduce and distribute the article in any format, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or other reproductions of a similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, W. & Pan, K. Shear performance of microscale ball grid array structure Sn–3.0Ag–0.5Cu solder joints with different surface finish combinations under electro-thermo-mechanical coupled loads. J Mater Sci: Mater Electron 33, 4924–4939 (2022). https://doi.org/10.1007/s10854-021-07682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07682-9

Navigation