Skip to main content
Log in

An efficient amperometric sensor for chloride ion detection through electroactive e-spun PVA-PANi-g-C3N4 nanofiber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel method for selective and sensitive detection of chloride ion plays a vital role in environmental monitoring, industrial and healthcare sectors. Here, we spotlight the synthesis, characterization and electrochemical performance analysis of electrospun PVA-PANi-g-C3N4 nanofibers (NFs) over screen printed carbon electrode and engaged as a modified NF electrode for chloride ion determination. The resulting nanofibers morphological views, functional groups and elemental composition were captured and recorded by FESEM, FTIR and XPS. The electrochemical behaviour of PVA-PANi-g-C3N4 NFs was studied by cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometric techniques, as the results directed that the modified NF electrode reveals a significant electrochemical sensitivity, selectivity for Cl ion with the value of linear regression co-efficient R2 = 0.99. The lowest limit of detection 0.2 µM with greater sensitivity (1.6082 µM µA/cm2) was succeeded. Owing to its synergistic interaction amid the PVA-PANi with g-C3N4 NF combinations an efficient electron transfer pathway was achieved which leads to an excellent ionic diffusion. Further, the outcomes from the real sample analysis creating them attractive and helping in profound study for electrochemical sensor towards practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q.S. Jiang, D. Mak, S. Devidas, E.M. Schwiebert, A. Bragin, Y.L. Zhang, W.R. Skach, W.B. Guggino, J.K. Foskett, J.F. Engelhardt, Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J. Cell Biol. 143, 645–657 (1998). https://doi.org/10.1083/jcb.143.3.645

    Article  CAS  Google Scholar 

  2. C. Huber, T. Werner, C. Krause, I. Klimant, O.S. Wolfbeis, Energy transfer-based lifetime sensing of chloride using a luminescent transition metal complex. Anal. Chim. Acta 364, 143–151 (1998). https://doi.org/10.1016/S0003-2670(98)00151-2

    Article  CAS  Google Scholar 

  3. C. Huber, I. Klimant, C. Krause, T. Werner, T. Mayr, O.S. Wolfbeis, Optical sensor for seawater salinity. Fresenius J. Anal. Chem. 368, 196–202 (2000). https://doi.org/10.1007/s002160000493

    Article  CAS  Google Scholar 

  4. M.F. Montemor, J.H. Alves, A.M. Simoes, J.C.S. Fernandes, Z. Lourenco, A.J.S. Costa, A.J. Appleton, M.G.S. Ferreira, Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cem. Concr. Compos. 28, 233–236 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.005

    Article  CAS  Google Scholar 

  5. L. Trnkova, V. Adam, J. Hubalek, P. Babula, R. Kizek, Amperometric sensor for detection of chloride ions. Sensors 8, 5619–5636 (2008). https://doi.org/10.3390/s8095619

    Article  CAS  Google Scholar 

  6. I.H.A. Badr, M. Diaz, M.F. Hawthorne, L.G. Bachas, Mercuracarborand, anti-crown ether- based chloride sensitive liquid/polymeric membrane electrodes. Anal. Chem. 71, 1371–1377 (1999). https://doi.org/10.1021/ac980896e

    Article  CAS  Google Scholar 

  7. J.N. Babu, V. Bhalla, M. Kumar, R.K. Mahajan, R.K. Puri, A chloride selective sensor based on a calix [4] arene possessing a urea moiety. Tetrahedron Lett. 49, 2772–2775 (2008). https://doi.org/10.1016/j.tetlet.2008.02.133

    Article  CAS  Google Scholar 

  8. J. Junsomboon, J. Jakmunee, Determination of chloride in admixtures and aggregates for cement by a simple flow injection potentiometric system. Talanta 76, 365–368 (2008). https://doi.org/10.1016/j.talanta.2008.03.006

    Article  CAS  Google Scholar 

  9. S. Sebkova, Determination of chlorides on composite silver electrodes. Chem. Listy 97, 201–205 (2003)

    CAS  Google Scholar 

  10. F. Hahn, Novel valve for automatic calibration of a chloride sensor for river monitoring. Biosyst. Eng. 92, 275–284 (2005). https://doi.org/10.1016/j.biosystemseng.2005.07.008

    Article  Google Scholar 

  11. R.H. Wu, X.G. Shao, Application of near-infrared spectra in the determination of water soluble chloride ion in plant samples. Spectrosc. Spectr. Anal. 26, 617–619 (2006)

    Google Scholar 

  12. A.M. Pimenta, A.N. Araujo, M. Conceicao, B.S.M. Montenegro, C. Pasquini, J.J.R. Rohwedder, I.M. Raimundo, Chloride-selective membrane electrodes and optodes based on an indium(III) porphyrin for the determination of chloride in a sequential injection analysis system. J. Pharm. Biomed. Anal. 36, 49–55 (2004). https://doi.org/10.1016/j.jpba.2004.04.011

    Article  CAS  Google Scholar 

  13. R.B.R. Mesquita, S.M.V. Fernandes, A. Rangel, Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system. J. Environ. Monit. 4, 458–461 (2002). https://doi.org/10.1039/B200456A

    Article  CAS  Google Scholar 

  14. M. Philippi, H.S. dos Santos, A.O. Martins, C.M.N. Azevedo, M. Pires, Alternative spectrophotometric method for standardization of chlorite aqueous solutions. Anal. Chim. Acta 585, 361–365 (2007). https://doi.org/10.1016/j.aca.2006.12.053

    Article  CAS  Google Scholar 

  15. H. Cao, H.W. Dong, Rapid and sensitive determination of trace chloride ion in drinks using resonance light scattering technique. J. Autom. Methods Manage. Chem. (2008). https://doi.org/10.1155/2008/745636

    Article  Google Scholar 

  16. V.G. Bonifacio, L.C. Figueiredo-Filho, L.H. Marcolino, O. Fatibello-Filho, An improved flow system for chloride determination in natural waters exploiting solid-phase reactor and long pathlength spectrophotometry. Talanta 72, 663–667 (2007). https://doi.org/10.1016/j.talanta.2006.11.036

    Article  CAS  Google Scholar 

  17. S. Krizkova, P. Ryant, O. Krystofova, V. Adam, M. Galiova, M. Beklova, P. Babula, J. Kaiser, K. Novotny, J. Novotny, M. Liska, R. Malina, J. Zehnalek, J. Hubalek, L. Havel, R. Kizek, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions—plants as bioindicators of environmental pollution. Sensors 8, 445–446 (2008). https://doi.org/10.3390/s8010445

    Article  CAS  Google Scholar 

  18. H. Bai, G.Q. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007). https://doi.org/10.3390/s7030267

    Article  CAS  Google Scholar 

  19. L. Ge, Y.S. Zhao, T. Mo, J.R. Li, P. Li, Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26, 188–193 (2012). https://doi.org/10.1016/j.foodcont.2012.01.022

    Article  CAS  Google Scholar 

  20. H. Liu, J. Kameoka, D.A. Czaplewski, H.G. Craighead, Polymeric nanowire chemical sensor. Nano Lett. 4, 671–675 (2004). https://doi.org/10.1021/nl049826f

    Article  CAS  Google Scholar 

  21. N.J. Pinto, A.T. Johnson Jr., A.G. MacDiarmid, C.H. Mueller, N. Theofylaktos, D.C. Robinson, F.A. Miranda, Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83, 4244–4246 (2003). https://doi.org/10.1063/1.1627484

    Article  CAS  Google Scholar 

  22. M. Wei, J. Lee, B. Kang, J. Mead, Preparation of core-sheath nanofibers from conducting polymer blends. Macromol. Rapid Commun. 26, 1127–1132 (2005). https://doi.org/10.1002/marc.200500212

    Article  CAS  Google Scholar 

  23. G. Siné, C.C. Hui, A. Kuhn, P.J. Kulesza, K. Miecznikowski, M. Chojak, A. Paderewska, A. Lewera, Spatial control of polyaniline electrodeposition by patterned polyoxometalate monolayers. J. Electrochem. Soc. 150, C351 (2003). https://doi.org/10.1149/1.1565139

    Article  CAS  Google Scholar 

  24. L. Huang, Z. Wang, H. Wang, X. Cheng, A. Mitra, Y. Yan, Polyaniline nanowires by electropolymerization from liquid crystalline phases. J. Mater. Chem. 12, 388–391 (2002). https://doi.org/10.1039/B107499G

    Article  CAS  Google Scholar 

  25. C. Bavatharani, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, K.M. Alsheetan, M.M. AL-Anazy, D. Ragupathy, Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review. Synth. Met. 271, 116609 (2020). https://doi.org/10.1016/j.synthmet.2020.116609

    Article  CAS  Google Scholar 

  26. D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater. Sci. Eng. B 134, 9–19 (2006). https://doi.org/10.1016/j.mseb.2006.07.037

    Article  CAS  Google Scholar 

  27. M. Eswaran, S.M. Wabaidur, Z.A. Alothman, R. Dhanusuraman, V.K. Ponnusamy, Improved cyclic retention and high-performance supercapacitive behavior of poly (diphenylamine-co-aniline)/phosphotungstic acid nanohybrid electrode. Int. J. Energy Res. 45, 8180–8188 (2020). https://doi.org/10.1002/er.5727

    Article  CAS  Google Scholar 

  28. C. Bavatharani, E. Muthusankar, S.C. Lee, M.R. Johan, D. Ragupathy, Excellent cyclic retention and supercapacitive performance of electrochemically active nanocomposite electrode. Sens. Lett. 18, 395–400 (2020). https://doi.org/10.1166/sl.2020.4233

    Article  Google Scholar 

  29. E. Muthusankar, D. Ragupathy, Graphene/Poly (aniline-co-diphenylamine) nanohybrid for ultrasensitive electrochemical glucose sensor. Nano-Struct. Nano-Objects 20, 100390 (2019). https://doi.org/10.1016/j.nanoso.2019.100390

    Article  CAS  Google Scholar 

  30. C. Bavatharani, E. Muthusankar, Z.A. Alothman, S.M. Wabaidur, V.K. Ponnusamy, D. Ragupathy, Ultra-high sensitive, selective, non-enzymatic dopamine sensor based on electrochemically active graphene decorated Polydiphenylamine-SiO2 nanohybrid composite. Ceram. Int. 46, 23276–23281 (2020). https://doi.org/10.1016/j.ceramint.2020.06.054

    Article  CAS  Google Scholar 

  31. S.A. Travain, G.L. Ferreira, J.A. Giacometti, R.F. Bianchi, Electrical characterization of in situ polymerized polyaniline thin films. Mater. Sci. Eng. B 143, 31–37 (2007). https://doi.org/10.1016/j.mseb.2007.07.071

    Article  CAS  Google Scholar 

  32. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Electrochemically sandwiched poly (diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth. Met. 254, 134–140 (2019). https://doi.org/10.1016/j.synthmet.2019.06.012

    Article  CAS  Google Scholar 

  33. C. Bavatharani, M. Eswaran, S.M. Wabaidur, Z.A. Alothman, P.C. Tsai, V.K. Ponnusamy, R. Dhanusuraman, Novel PDPA-SiO2 nanosphericals network decorated graphene nanosheets composite coated FTO electrode for efficient electro-oxidation of methanol. Fuel 279, 118439 (2020). https://doi.org/10.1016/j.fuel.2020.118439

    Article  CAS  Google Scholar 

  34. G. Zhengyang, N. Song, H. Zhang, Z. Ma, Y. Wang, C. Chen, One-step electrofabrication of reduced graphene oxide/poly (N-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc. 167, 085501 (2020). https://doi.org/10.1149/1945-7111/ab8c82

    Article  CAS  Google Scholar 

  35. B. Chokkiah, M. Eswaran, S.M. Wabaidur, M.R. Khan, V.K. Ponnusamy, D. Ragupathy, A novel electrodeposited poly (melamine)-palladium nanohybrid catalyst on GCE: prosperous multi-functional electrode towards methanol and ethanol oxidation. Fuel 300, 121005 (2021). https://doi.org/10.1016/j.fuel.2021.121005

    Article  CAS  Google Scholar 

  36. L. Yinqiu, N. Song, Z. Ma, K. Zhou, Z. Gan, Y. Gao, S. Tang, C. Chen, Synthesis of a poly (N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater. Chem. Phys. 223, 548–556 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.045

    Article  CAS  Google Scholar 

  37. E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, M.R. Johan, V.K. Ponnusamy, D. Ragupathy, Fabrication of amperometric sensor for glucose detection based on phosphotungstic acid–assisted PDPA/ZnO nanohybrid composite. Ionics 26, 6341–6349 (2020). https://doi.org/10.1007/s11581-020-03740-0

    Article  CAS  Google Scholar 

  38. C. Chuanxiang, Z. Gan, K. Zhou, Z. Ma, Y. Liu, Y. Gao, Catalytic polymerization of N-methylthionine at electrochemically reduced graphene oxide electrodes. Electrochim. Acta 283, 1649–1659 (2018). https://doi.org/10.1016/j.electacta.2018.07.051

    Article  CAS  Google Scholar 

  39. M.S. Cho, S.Y. Park, J.Y. Hwang, H.J. Choi, Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. Mater. Sci. Eng. C 24, 15–18 (2004). https://doi.org/10.1016/j.msec.2003.09.003

    Article  CAS  Google Scholar 

  40. P.L.B. Araujo, E.S. Araujo, R.F.S. Santos, A.P.L. Pacheco, Synthesis and morphological characterization of PMMA/polyaniline nanofiber composites. Microelectron. J. 36, 1055–1057 (2005). https://doi.org/10.1016/j.mejo.2005.04.024

    Article  CAS  Google Scholar 

  41. A.R. Hopkins, D.D. Sawall, R.M. Villahermosa, R.A. Lipeles, Interfacial synthesis of electrically conducting polyaniline nanofiber composites. Thin Solid Films 469, 304–308 (2004). https://doi.org/10.1016/j.tsf.2004.08.089

    Article  CAS  Google Scholar 

  42. I.D. Norris, M.M. Shaker, F.K. Ko, A.G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth. Met. 114, 109–114 (2000). https://doi.org/10.1016/S0379-6779(00)00217-4

    Article  CAS  Google Scholar 

  43. Z. Chen, Y. Jiang, B. Xin, S. Jiang, Y. Liu, L. Lin, Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03204-1

    Article  Google Scholar 

  44. A.M. Asiri, Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells. J. Electroanal. Chem. 789, 181–187 (2017). https://doi.org/10.1016/j.jelechem.2017.02.025

    Article  CAS  Google Scholar 

  45. K. Jeyasubramanian, E. Muthusankar, G.S. Hikku, N. Selvakumar, Improved thermal and fire retardant behavior of polyvinyl alcohol matrix using nanocomposites. Int. J. Nanosci. 18, 1850025 (2019). https://doi.org/10.1142/S0219581X18500254

    Article  CAS  Google Scholar 

  46. Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, J. Chen, N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8, 157–164 (2014). https://doi.org/10.1016/j.nanoen.2014.06.003

    Article  CAS  Google Scholar 

  47. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5, 6717–6731 (2012). https://doi.org/10.1039/C2EE03479D

    Article  CAS  Google Scholar 

  48. M. Eswaran, R. Dhanusuraman, P.C. Tsai, V.K. Ponnusamy, One-step preparation of graphitic carbon nitride/polyaniline/palladium nanoparticles based nanohybrid composite modified electrode for efficient methanol electro-oxidation. Fuel 251, 91–97 (2019). https://doi.org/10.1016/j.fuel.2019.04.040

    Article  CAS  Google Scholar 

  49. M. Rong, L. Lin, X. Song, Y. Wang, Y. Zhong, J. Yan, Y. Feng, X. Zeng, X. Chen, Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch.” Biosens. Bioelectron. 68, 210–217 (2015). https://doi.org/10.1016/j.bios.2014.12.024

    Article  CAS  Google Scholar 

  50. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 99–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101

    Article  CAS  Google Scholar 

  51. T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride (gC3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 1, 6489–6496 (2013). https://doi.org/10.1039/C3TA10472A

    Article  CAS  Google Scholar 

  52. Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@Carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 133, 2362–2365 (2011). https://doi.org/10.1021/ja109856y

    Article  CAS  Google Scholar 

  53. G. Dong, Y. Zhang, Q. Pan, J.A. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002

    Article  CAS  Google Scholar 

  54. R.A. Medeiros, R. Matos, A. Benchikh, B. Saidani, C. Debiemme-Chouvy, C. Deslouis, R.C. Rocha-Filho, O. FatibelloFilho, Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid. Anal. Chim. Acta 797, 30–39 (2013). https://doi.org/10.1016/j.aca.2013.08.018

    Article  CAS  Google Scholar 

  55. H. Zhang, Q. Huang, Y. Huang, F. Li, W. Zhang, C. Wei, J. Chen, P. Dai, L. Huang, Z. Huang, L. Kang, Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 142, 125–131 (2014). https://doi.org/10.1016/j.electacta.2014.07.094

    Article  CAS  Google Scholar 

  56. M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind. Eng. Chem. Res. 55, 8114–8122 (2016). https://doi.org/10.1021/acs.iecr.6b01699

    Article  CAS  Google Scholar 

  57. P. Frontera, C. Busacca, S. Trocino, P. Antonucci, M.L. Faro, E. Falletta, C.D. Pina, M. Rossi, Electrospinning of polyaniline: effect of different raw sources. J. Nanosci. Nanotechnol. 13, 4744–4751 (2013). https://doi.org/10.1166/jnn.2013.7196

    Article  CAS  Google Scholar 

  58. E. Muthusankar, S. Vignesh Kumar, N. Rajagopalan, D. Ragupathy, Synthesis and characterization of co-polymer nanocomposite film and its enhanced antimicrobial behaviour. BioNanoScience 8, 1008–1013 (2018). https://doi.org/10.1007/s12668-018-0564-x

    Article  Google Scholar 

  59. F. Lai, Z. Fang, L. Cao, W. Li, Z. Lin, P. Zhang, Self-healing flexible and strong hydrogel nanocomposites based on polyaniline for supercapacitors. Ionics (2020). https://doi.org/10.1007/s11581-020-03438-3

    Article  Google Scholar 

  60. S.H. Patil, A.P. Gaikwad, S.D. Sathaye, K.R. Patil, To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochim. Acta 265, 556–568 (2018). https://doi.org/10.1016/j.electacta.2018.01.165

    Article  CAS  Google Scholar 

  61. L. Tan, Xu. Jianhua, X. Zhang, Z. Hang, Y. Jia, S. Wang, Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 356, 447–453 (2015). https://doi.org/10.1016/j.apsusc.2015.08.078

    Article  CAS  Google Scholar 

  62. S. Pan, M. Jamal Deen, R. Ghosh, Low-cost graphite-based free chlorine sensor. Anal. Chem. 87, 10734–10737 (2015). https://doi.org/10.1021/acs.analchem.5b03164

    Article  CAS  Google Scholar 

  63. M. Cuartero, G.A. Crespo, E. Bakker, Paper based thin-layer coulometric sensor for halide determination. Anal. Chem. 87, 1981–1990 (2015). https://doi.org/10.1021/ac504400w

    Article  CAS  Google Scholar 

  64. M.M. Rahman, S.B. Khan, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, A.M. Asiri, Chloride ion sensors based on low-dimensional α-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I-V technique. Electrochim. Acta 103, 143–150 (2013). https://doi.org/10.1016/j.electacta.2013.04.067

    Article  CAS  Google Scholar 

  65. Q. Bin, M. Wang, L. Wang, Ag nanoparticles decorated into metal-organic framework (Ag NPs/ZIF-8) for electrochemical sensing of chloride ion. Nanotechnology 31, 125601 (2020). https://doi.org/10.1088/1361-6528/ab5cde

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Researchers Supporting Project No. (RSP-2021/1), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragupathy Dhanusuraman.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chokkiah, B., Eswaran, M., Wabaidur, S.M. et al. An efficient amperometric sensor for chloride ion detection through electroactive e-spun PVA-PANi-g-C3N4 nanofiber. J Mater Sci: Mater Electron 33, 9425–9437 (2022). https://doi.org/10.1007/s10854-021-07378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07378-0

Navigation