Skip to main content

Advertisement

Log in

Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitor is a promising electrochemical energy-storage device, which has the advantage of good cycle stability, short charging time, and high power density, so it has broad application prospects. Electrode as a core component has an important influence on the specific capacitance and performance of the supercapacitor. In this study, a series of reduced graphene oxide/polyaniline/polyvinyl alcohol (RGO/PANI/PVA) nanofibers with different RGO concentrations were synthesized by electrospinning method and then studied as electrode materials for supercapacitors. The experimental result reveals that the PANI/PVA nanofiber shows the pseudocapacitance properties, while the RGO/PANI/PVA nanofibers exhibit the electrochemical properties of the double-layer capacitor. In addition, the RGO/PANI/PVA nanofibers have a uniform diameter distribution of 119.8 nm without beads and droplets sticking when the concentration of RGO is 0.2%. This morphology contributes to a large specific surface area of fibers and provides sufficient channels for the transport of ions. RGO/PANI/PVA nanofibers exhibit better specific capacitance of 174 F/g when compared with the PANI/PVA (105 F/g). The research indicates that RGO/PANI/PVA nanofibers with high specific capacitance can provide a promising application as supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.L. Chiam, H.N. Lim, S.M. Hafiz, A. Pandikumar, N.M. Huang, Electrochemical performance of supercapacitor with stacked copper foils coated with graphene nanoplatelets. Sci. Rep. 8(1), 3093 (2018)

    Article  CAS  Google Scholar 

  2. J.S. Shayeh, P. Norouzi, M.R. Ganjali, Studying the supercapacitive behavior of a polyaniline/nano-structural manganese dioxide composite using fast Fourier transform continuous cyclic voltammetry. RSC Adv. 5(26), 20446–20452 (2015)

    Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater. 7(11), 845–854 (2008)

    Article  CAS  Google Scholar 

  4. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  5. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Source. 157(1), 11–27 (2006)

    Article  CAS  Google Scholar 

  6. H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, Y. Kuang, The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J. Solid State Electrochem. 9(8), 574–580 (2005)

    Article  CAS  Google Scholar 

  7. S. Ghobadi, S. Sadighikia, M. Papila, F.C. Cebeci, S.A. Gursel, Graphene-reinforcedpoly (vinyl alcohol) electrospun fibers as building blocksfor high performancenanocomposites. RSC Adv. 5(103), 85009–85018 (2015)

    Article  CAS  Google Scholar 

  8. D. Gui, C. Liu, F. Chen, J. Liu, Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl. Surf. Sci. 307, 172–177 (2014)

    Article  CAS  Google Scholar 

  9. J.S. Shayeh, A. Ehsani, M.R. Ganjali, P. Norouzi, B. Jaleh, Conductive polymer/reduced graphene oxide/au nano particles as efficient composite materials in electrochemical supercapacitors. Appl. Surf. Sci. 353, 594–599 (2015)

    Article  Google Scholar 

  10. Y. Jiang, Z.M. Chen, B. Xin et al., Fabrication and characterization of flexible electrochromic membrane based on polyaniline/reduced graphene oxide. J. Mater. Res. 34(10), 1302–1308 (2019)

    Article  CAS  Google Scholar 

  11. Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 81(2), 1825–1858 (2018)

    Article  CAS  Google Scholar 

  12. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  CAS  Google Scholar 

  13. Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)

    Article  CAS  Google Scholar 

  14. N.J. Pinto, A.T. Johnson, A.G. Macdiarmid, C.H. Mueller, N. Theofylaktos, D.C. Robinson et al., Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83(20), 4244 (2003)

    Article  CAS  Google Scholar 

  15. K.T. Peter, A.J. Johns, N.V. Myung et al., Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal. Water Res. 117, 207–217 (2017)

    Article  CAS  Google Scholar 

  16. L.C. Tsai, C.T. Pan, C.K. Yen, S.Y. Wang, & Z.H. Wen. Study of the drug fiber for wound healing by direct-writing near field electrospinning with subdivision control. 2017 International Conference on Applied System Innovation (ICASI). IEEE. (2017)

  17. X. Lu, C. Wang, F. Favier, N. Pinna, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater. 7(2), 160 (2017)

    Article  Google Scholar 

  18. A. Rose, K.P. Guru, T. Sakthivel et al., Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 449, 551–557 (2018)

    Article  CAS  Google Scholar 

  19. S. Chaudhari, Y. Sharma, P.S. Archana, R. Jose, S. Ramakrishna, S. Mhaisalkar et al., Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 129(4), 1660–1668 (2013)

    Article  CAS  Google Scholar 

  20. J. Bhadra, N.K. Madi, N.J. Al-Thani, M.A. Al-Maadeed, Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties. Synth. Met. 191, 126–134 (2014)

    Article  CAS  Google Scholar 

  21. M. Fahimeh, F. Javad, N. Sina, R. Joselito, N. Minoo, Nanostructured electrospun hybrid graphene/polyacrylonitrile yarns. Nanomaterials. 7(10), 293 (2017)

    Article  Google Scholar 

  22. P. Frontera, C. Busacca, S. Trocino, P. Antonucci, M.L. Faro, E. Falletta et al., Electrospinning of polyaniline: effect of different raw sources. J. Nanosci. Nanotechnol. 13(7), 4744–4751 (2013)

    Article  CAS  Google Scholar 

  23. G. Cai, J. Tu, D. Zhou, J. Zhang, Q. Xiong, X. Zhao, X. Wang, C. Gu, Multicolor electrochromic film based on TiO2/polyaniline core/shell nanorod array. J. Phys. Chem. C 117(31), 15967–15975 (2013)

    Article  CAS  Google Scholar 

  24. Y. Wang, X. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. Sci. 6(2), 477–481 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by Research Initiation Funds of Shanghai University of Engineering Science (2016-27), Student Research Innovation Training Program-SUES (cs1809004), Young Scholar Training Scheme of Shanghai Universities (ZZGCD16028), 2017 Talents Action Program of Shanghai University of Engineering Science (2017RC432017), and Shanghai Local Capacity-Building Project (No. 19030501200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuoming Chen or Binjie Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Jiang, Y., Xin, B. et al. Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J Mater Sci: Mater Electron 31, 5958–5965 (2020). https://doi.org/10.1007/s10854-020-03204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03204-1

Navigation