Skip to main content
Log in

Synthesis and Characterization of Co-Polymer Nanocomposite Film and its Enhanced Antimicrobial Behavior

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This work reports the synthesis, characterization, and antimicrobial activity of polyaniline/polyvinyl alcohol (PANI/PVA) and polydiphenylamine/polyvinyl alcohol (PDPA/PVA) co-polymer nanocomposite films. Initially, chemical oxidative polymerization was employed to synthesis PANI and PDPA by oxidizing aniline (AN) and diphenylamine (DPA) in the presence of ammonium peroxydisulfate (APS) as an oxidant. A trace amount of prepared PANI and PDPA were used to prepare nanocomposite films by solution casting technique, using PVA as a stabilizer. Surface morphological studies reveal the impregnated amorphous structure of PANI and PDPA size in the range of ~ 50–150 nm. Fourier transform infrared (FTIR) examines to confirm the presence of PANI, PDPA, and PVA in nanocomposite film. Disk diffusion approach was adopted to study the antimicrobial activity of PANI/PVA and PDPA/PVA nanocomposite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan, S., Li, G., Shen, J., Liu, Y., & Zong, M. (2000). Study of modified polypropylene nonwoven cloth. II. Antibacterial activity of modified polypropylene nonwoven cloths. Journal of Applied Polymer Science, 77(9), 1869–1876.

    Article  Google Scholar 

  2. Kenawy, E. R., Abdel-Hay, F. I., El-Shanshoury, A. E. R. R., & El-Newehy, M. H. (2002a). Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly (glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. Journal of Polymer Science Part A: Polymer Chemistry, 40(14), 2384–2393.

    Article  Google Scholar 

  3. Hirano, S., & Nagao, N. (1989). Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agricultural and Biological Chemistry, 53(11), 3065–3066.

    Google Scholar 

  4. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., & Li, P. (2007). Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 342(10), 1329–1332.

    Article  Google Scholar 

  5. da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V., & de Fátima, Â. (2011). Schiff bases: a short review of their antimicrobial activities. Journal of Advanced Research, 2(1), 1–8.

    Article  Google Scholar 

  6. Irimia-Vladu, M., & Fergus, J. W. (2006). Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synthetic Metals, 156(21), 1401–1407.

    Article  Google Scholar 

  7. Patil, D. S., Shaikh, J. S., Dalavi, D. S., Kalagi, S. S., & Patil, P. S. (2011). Chemical synthesis of highly stable PVA/PANI films for supercapacitor application. Materials Chemistry and Physics, 128(3), 449–455.

    Article  Google Scholar 

  8. Hou, W., Xiao, Y., Han, G., Fu, D., & Wu, R. (2016). Serrated, flexible and ultrathin polyaniline nanoribbons: an efficient counter electrode for the dye-sensitized solar cell. Journal of Power Sources, 322, 155–162.

    Article  Google Scholar 

  9. Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7(12), 4204–4209.

    Article  Google Scholar 

  10. Jia, Q., Shan, S., Jiang, L., Wang, Y., & Li, D. (2012). Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125(5), 3560–3566.

    Article  Google Scholar 

  11. Lashkenari, M. S., & Eisazadeh, H. (2016). Enhanced functionality of colloidal polyaniline/polyvinyl alcohol nanocomposite as an antibacterial agent. Journal of Vinyl and Additive Technology, 22(3), 267–272.

    Article  Google Scholar 

  12. Ghaffari-Moghaddam, M., & Eslahi, H. (2014). Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian Journal of Chemistry, 7(5), 846–855.

    Article  Google Scholar 

  13. Hua, F., & Ruckenstein, E. (2004). Fluorescence study of aggregation in water of PEO-grafted polydiphenylamine. Langmuir, 20(10), 3954–3961.

    Article  Google Scholar 

  14. Ragupathy, D., Gopalan, A. I., & Lee, K. P. (2009). Layer-by-layer electrochemical assembly of poly (diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Microchimica Acta, 166(3–4), 303–310.

    Article  Google Scholar 

  15. Tsai, Y. T., Wen, T. C., & Gopalan, A. (2003). Tuning the optical sensing of pH by poly (diphenylamine). Sensors and Actuators B: Chemical, 96(3), 646–657.

    Article  Google Scholar 

  16. Ragupathy, D., Gomathi, P., Lee, S. C., Al-Deyab, S. S., Lee, S. H., & Do Ghim, H. (2012). One-step synthesis of electrically conductive polyaniline nanostructures by oxidative polymerization method. Journal of Industrial and Engineering Chemistry, 18(4), 1213–1215.

    Article  Google Scholar 

  17. Wang, H., Wen, H., Hu, B., Fei, G., Shen, Y., Sun, L., & Yang, D. (2017). Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties. Scientific Reports, 7, srep43694.

    Article  Google Scholar 

  18. Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure and Applied Chemistry, 83(10), 1803–1817.

    Article  Google Scholar 

  19. Ghobadi, S., Mehraeen, S., Bakhtiari, R., Shamloo, B., Sadhu, V., Papila, M., & Gürsel, S. A. (2016). PVA/PANI/rGO ternary electrospun mats as metal-free anti-bacterial substrates. RSC Advances, 6(95), 92434–92442.

    Article  Google Scholar 

  20. Wen, T. C., Sivakumar, C., & Gopalan, A. (2002). Studies on processable conducting blend of poly (diphenylamine) and poly (vinylidene fluoride). Materials Letters, 54(5), 430–441.

    Article  Google Scholar 

  21. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423–435.

    Article  Google Scholar 

  22. Qazi, T. H., Rai, R., & Boccaccini, A. R. (2014). Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials, 35(33), 9068–9086.

    Article  Google Scholar 

  23. Riaz, U., & Ashraf, S. M. (2013). Evaluation of antibacterial activity of nanostructured copolymers of poly (naphthylamine). International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 406–410.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the basic research support from National Institute of Technology Puducherry, Karaikal, India.

Funding

This study is supported by the Science and Engineering Research Board—Department of Science Technology grant (SB/FT/CS-117/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ragupathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusankar, E., Vignesh Kumar, S., Rajagopalan, N. et al. Synthesis and Characterization of Co-Polymer Nanocomposite Film and its Enhanced Antimicrobial Behavior. BioNanoSci. 8, 1008–1013 (2018). https://doi.org/10.1007/s12668-018-0564-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0564-x

Keywords

Navigation