Skip to main content
Log in

Fabrication of amperometric sensor for glucose detection based on phosphotungstic acid–assisted PDPA/ZnO nanohybrid composite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Amperometric sensor of polydiphenylamine (PDPA)/phosphotungstic acid (PTA)/zinc oxide (ZnO) on glassy carbon (GC) nanohybrid composite electrode (GC/PDPA/PTA/ZnO) fabricated via facile electrochemical deposition method. The structural geometry and surface morphology were recorded by X-ray diffraction spectrometer (XRD) and scanning electron microscopy (SEM). Electro-catalytic properties and performances of nanohybrid composite were recorded by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) methods. PTA-assisted PDPA/ZnO-ME shows linear steady-state response towards glucose with superior sensitivity of 20.30 μA μM−1 cm−2, lowest detection limit 0.1 μM, and rapid response less than 2 s. The improved electro-catalytic performance towards glucose by GC/PDPA/PTA/ZnO is due to the combined existence of diphenoquinone diamine (DPDI2+) and phosphotungstic acid anion which provides a higher electro-catalytic active spots leads to more electron transport pathway for the oxidation of glucose. Interference analyses confirm the prepared nanohybrid sensor is best apt for glucose detection claims its practical biomedical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys ChemChem Phys 18(12):8264–8277

    CAS  Google Scholar 

  2. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    CAS  PubMed  Google Scholar 

  3. Mullane APO, Dale SE, Day TM, Wilson NR, Macpherson JV, Unwin PR (2006) Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties. J Solid State Electrochem 10(10):792–807

    Google Scholar 

  4. Nardis S, Monti D, Natable CD, Amico AD, Siciliano P, Forleo A, Epifani M, Taurino A, Rella R, Paolesse R (2004) Preparation and characterization of cobalt porphyrin modified tin dioxide films for sensor applications. Sens. Actuators B 103:339–343

    CAS  Google Scholar 

  5. Muthusankar E, Dhanusuraman R, Tsai P-C, Ponnusamy VK (2019) One-step preparation of graphitic carbon nitride/Polyaniline/palladium nanoparticles based nanohybrid composite modified electrode for efficient methanol electro-oxidation. Fuel 251:91–97

    Google Scholar 

  6. Deshpande NG, Gudage YG, Sharma R, Vyas JC, Kim JB, Lee YP (2009) Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens. Actuators B 138:76–84

    CAS  Google Scholar 

  7. Muthusankar E, Ragupathy D (2019) Graphene/poly (aniline-co-diphenylamine) nanohybrid for ultrasensitive electrochemical glucose sensor. Nano-Structures & Nano-Objects 20:100390

    CAS  Google Scholar 

  8. Xie Y, Zhu F (2017) Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J. Solid State Chem 21:1675–1685

    CAS  Google Scholar 

  9. Mehdinia A, Dejaloud M, Jabbari A (2013) Nanostructured polyaniline-coated anode for improving microbial fuel cell power output. Chem Pap 67:1096–1102

    CAS  Google Scholar 

  10. Muthusankar E, Ponnusamy VK, Ragupathy D (2019) Electrochemically sandwiched poly (diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth Met 254:134–140

    CAS  Google Scholar 

  11. Muthusankar E, Ragupathy D (2019) Supercapacitive retention of electrochemically active phosphotungstic acid supported poly (diphenylamine)/MnO2 hybrid electrode. Mater Lett 241:144–147

    CAS  Google Scholar 

  12. Chokkiah B, Eswaran M, Wabaidur SM, Alothman ZA, Tsai P-C, Ponnusamy VK, Dhanusuraman R (2020) Novel PDPA-SiO2 nanosphericals network decorated graphene nanosheets composite coated FTO electrode for efficient electro-oxidation of methanol. Fuel 279:118439

    CAS  Google Scholar 

  13. Bavatharani C, Muthusankar E, Alothman ZA, Wabaidur SM, Ponnusamy VK, Ragupathy D (2020) Ultra-high sensitive, selective, non-enzymatic dopamine sensor based on electrochemically active graphene decorated Polydiphenylamine-SiO2 nanohybrid composite. Ceram Int (2020)

  14. Huang LM, Wen TC, Gopalan A, Ren F (2003) Structural influence on the electronic properties of methoxy substituted polyaniline/ aluminum Schottky barrier diodes. Materials Sci Eng B 104:88–95

    Google Scholar 

  15. Song YF, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41:7384–7402

    CAS  PubMed  Google Scholar 

  16. Chikin AI, Chernyak AV, Jin Z, Naumova YS, Ukshe AE, Smirnova NV, Volkov VI, Dobrovolsky YA (2012) Mobility of protons in 12-phosphotungstic acid and its acid and neutral salts. J Solid State Electrochem 16:2767–2775

    CAS  Google Scholar 

  17. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–218

    CAS  PubMed  Google Scholar 

  18. Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349

    CAS  PubMed  Google Scholar 

  19. Vinoth V, Shergilin TD, Asiri AM, Wu JJ, Anandan S (2018) Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications. Mater Sci Semicond Process 82:31–38

    CAS  Google Scholar 

  20. Muthuchamy N, Lee KP, Gopalan AI (2017) Enhanced photoelectrochemical biosensing performances for graphene (2D)–titanium dioxide nanowire (1D) heterojunction polymer conductive nanosponges. Biosens Bioelectron 89:390–399

    CAS  PubMed  Google Scholar 

  21. Gopalan AI, Muthuchamy N, Komathi S, Lee KP (2016) A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens.Bioelectron 84:53–63

    CAS  PubMed  Google Scholar 

  22. Gopalan AI, Muthuchamy N, Lee KP (2017) A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. Biosens Bioelectron 89:352–360

    CAS  PubMed  Google Scholar 

  23. Rahman MM, Ahammad AJ, Jin J-H, Ahn SJ, Lee J-J (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5):4855–4886

    CAS  PubMed  Google Scholar 

  24. Wahab HA, Salama AA, El Saeid AA, Willander M, Nur O, Battisha IK (2018) Zinc oxide nano-rods based glucose biosensor devices fabrication. Results in Physics 9:809–814

    Google Scholar 

  25. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Shi Y (2016) ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Sci Rep 6:32327

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens. Actuators B 251:462–471

    CAS  Google Scholar 

  27. Muthuchamy N, Atchudan R, Edison TNJI, Perumal S, Lee YR (2018) High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J Electroanal Chem 816:195–204

    CAS  Google Scholar 

  28. Zhang J, Xiao X, He Q, Huang L, Li S, Wang F (2014) A nonenzymatic glucose sensor based on a copper nanoparticle–zinc oxide nanorod array. Anal Lett 47(7):1147–1161

    CAS  Google Scholar 

  29. Muthusankar E, Lee SC, Ragupathy D (2018) Enhanced Electron transfer characteristics of surfactant wrapped SnO2 nanorods impregnated poly (diphenylamine) matrix. Sens Lett 16(12):911–917

    Google Scholar 

  30. Ahmad R, Tripathy N, Ahn MS, Bhat KS, Mahmoudi T, Wang Y, Hahn YB (2017) Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci Rep 7(1):5715

    PubMed  PubMed Central  Google Scholar 

  31. Aini BN, Siddiquee S, Ampon K, Rodrigues KF, Suryani S (2015) Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane. Sens Biosensing Res 4:46–56

    Google Scholar 

  32. Fung CM, Lloyd JS, Samavat S, Deganello D, Teng KS (2017) Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique. Sens. Actuators B 247:807–813

    CAS  Google Scholar 

  33. Chen C, Gan Z, Xu C, Lu L, Liu Y, Gao Y (2017) Electrosynthesis of poly (aniline-co-azure B) for aqueous rechargeable zinc-conducting polymer batteries. Electrochim Acta 252:226–234

    CAS  Google Scholar 

  34. Chen C, Gan Z, Zhou K, Ma Z, Liu Y, Gao Y (2018) Catalytic polymerization of N-methylthionine at electrochemically reduced graphene oxide electrodes. Electrochim Acta 283:1649–1659

    CAS  Google Scholar 

  35. Liu Y, Song N, Ma Z, Zhou K, Gan Z, Gao Y, Tang S, Chen C (2019) Synthesis of a poly (N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater Chem Phys 223:548–556

    CAS  Google Scholar 

  36. Palani B, Thirumalraj B, Chen S-M, Angaiah S (2019) A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem J 147:848–856

    Google Scholar 

  37. Palani B, Thirumalraj B, Shen-Ming C, Subramania A (2017) One-pot electrochemical preparation of copper species immobilized poly (o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H2O2 sensor. Inorg Chem Front 4:1356–1364

    Google Scholar 

  38. Balamurugan C, Bhuvanalogini G, Subramania A (2012) Development of nanocrystalline CrNbO4 based p-type semiconducting gas sensor for LPG, ethanol and ammonia. Sens. Actuators B 168:165–171

    CAS  Google Scholar 

  39. Balamurugan C, Subashini A, Chaudhari GN, Subramania A (2012) Development of wide band gap sensor based on AlNbO4 nanopowder for ethanol. J. Alloys Compd 526:110–115

    CAS  Google Scholar 

  40. Balamurugan C, Vijayakumar E, Subramania A (2012) Synthesis and characterization of InNbO4 nanopowder for gas sensors. Talanta 88:115–120

    CAS  PubMed  Google Scholar 

  41. Jiangfeng G, Zhaoming D, Qingping D, Xu Y, Zhu W (2010) Controlled synthesis of ZnO nanostructures by electrodeposition method. J Nanomater 2010:1–6

    Google Scholar 

  42. Lingappan N, Jeong YT, Gal YS, Lim KT (2013) Preparation and characterization of graphene/poly (diphenylamine) composites. J Nanosci Nanotechnol 13(5):3723–3727

    CAS  PubMed  Google Scholar 

  43. Farhadi S, Amini MM, Mahmoudi F (2016) Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO3 nanoparticles: a novel recyclable and excellent visible-light photocatalyst. RSC Adv 6(105):102984–102996

    CAS  Google Scholar 

  44. Alvi F, Ram MK, Gomez H, Joshi RK, Kumar A (2010) Evaluating the chemio-physio properties of novel zinc oxide–polyaniline nanocomposite polymer films. Polym J 42(12):935–940

    CAS  Google Scholar 

  45. Samavati A, Samavati Z, Ismail AF, Othman MHD, Rahman MA, Amiri IS (2018) Effect of organic ligand-decorated ZnO nanoparticles as a cathode buffer layer on electricity conversion efficiency of an inverted solar cell. RSC Adv 8(3):1418–1426

  46. Anusha JR, Kim HJ, Fleming AT, Das SJ, Yu KH, Kim BC, Raj CJ (2014) Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sensors and Actuators B: Chem 202:827–833

    CAS  Google Scholar 

  47. Ahmad M, Pan C, Luo Z, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114(20):9308–9313

    CAS  Google Scholar 

  48. Nguyen HB, Ngo TTT, Nguyen NT, Dang TTH, Do PQ, Nguyen XN, Phan NM (2012) Graphene patterned polyaniline-based biosensor for glucose detection. Adv Nat Sci Nanosci Nanotechnol 3(2):025011

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Researchers Supporting Project No.(RSP-2020/1), King Saud University, Riyadh, Saudi Arabia. Also, authors acknowledge the support from Science and Engineering Research Board (EEQ/2018/000574), New Delhi, India, and basic research support from National Institute of Technology Puducherry, Karaikal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ragupathy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusankar, E., Wabaidur, S.M., Alothman, Z.A. et al. Fabrication of amperometric sensor for glucose detection based on phosphotungstic acid–assisted PDPA/ZnO nanohybrid composite. Ionics 26, 6341–6349 (2020). https://doi.org/10.1007/s11581-020-03740-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03740-0

Keywords

Navigation