Skip to main content
Log in

Dielectric properties and AC conductivity of nickel supported on silicon dioxide: facile synthesis and DFT calculation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite based on silicon dioxide (SiO2) with 5 wt% Ni (Ni/SiO2) was synthesized via a facile incipient wet impregnation technique. The main purpose is to address the influence of Ni on the dielectric properties and AC conductivity of SiO2. Impedance spectroscopy was employed in a frequency range of 1 kHz–300 kHz at various temperatures. The results revealed that the incorporation of Ni significantly enhanced the dielectric constant (ε′) and the AC conductivity (σ′) of SiO2. The conductivity spectra σ′ (ν) showed Jonscher’s power law behavior, σ′ ~ ωs. The temperature dependence of the exponent (s) suggests that the conduction mechanism is governed by the small polaron hopping mechanism. The bias voltage study on the dielectric performance of the samples was investigated at 100 kHz. The results revealed almost zero tunability, which could be attributed to the dominance of the bulk contribution to the permittivity. The IV characteristic curves showed linear behavior with slope one demonstrating that the charge transport mechanism is ohmic in nature. Based on density functional theory DFT, a simple first-principle calculations were performed to examine the effect of Ni on the optical dielectric properties of SiO2. In accordance with the experimental results, the calculations showed that the addition of Ni improved the optical dielectric constant of SiO2. The improved dielectric performance, particularly at room temperature, suggests that the Ni/SiO2 is a potential candidate for practical applications such as electric accessories and capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran, Sens. Actut. B 101, 161 (2004)

    Article  CAS  Google Scholar 

  2. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  3. H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Hydrogen Energy 46(39), 20534 (2021)

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Ceram. Int. 47, 8959 (2021)

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati Niasari, Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshira, M.S. Morassaei, M. Salavati-Niasari, Compos. Part B 167, 643 (2019)

    Article  Google Scholar 

  7. O.A. Desouky, SN Appl. Sci. 2, 136 (2020)

    Article  CAS  Google Scholar 

  8. K.P.O. Mahesh, D.H. Kuo, B.R. Huang, M. Ujihara, T. Imae, Appl. Catal. A 475, 235 (2014)

    Article  CAS  Google Scholar 

  9. K.P.O. Mahesh, D.H. Kuo, Appl. Surf. Sci. 357, 433 (2015)

    Article  CAS  Google Scholar 

  10. S. Chakrabarty, K. Chatterjee, J. Phys. Sci. 13, 245 (2009)

    Google Scholar 

  11. M. Borgstrom, E. Blart, G. Boschloo, E. Mukhtar, A. Hagfeldt, L. Hammarstrom, F. Odobel, J. Phys. Chem. B 109, 22928 (2005)

    Article  Google Scholar 

  12. S. Jensen, D.S. Kilin, J. Phys.: Condens. Matter. 27(13), 134207 (2015)

    Google Scholar 

  13. M. Saleem, I.S. Kim, J.S. Song, S.J. Jeong, M.S. Kim, S. Yoon, Ceram. Int. 40, 7329 (2014)

    Article  CAS  Google Scholar 

  14. C. Pecharromán, F. Esteban-Betegón, J.F. Bartolomé, S. López-Esteban, J.S. Moya, Adv. Mater. 13, 1541 (2001)

    Article  Google Scholar 

  15. M.M. Gomaa, H.M. Gobara, Mater. Chem. Phys. 113, 790 (2009)

    Article  CAS  Google Scholar 

  16. A.H. Bashal, M.H. Saad, M.A. Khalafalla, J. Taibah Univ. Sci. 14, 496 (2020)

    Article  Google Scholar 

  17. R. Khalil, Appl. Phys. A 123(6), 422 (2017)

    Article  Google Scholar 

  18. K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013)

    Article  Google Scholar 

  19. S.F. Mendes, C.M. Costa, C. Caparros, V. Sencadas, S. Lanceros-Mendez, J. Mater. Sci. 47, 1378–1388 (2012)

    Article  CAS  Google Scholar 

  20. M. Zhao, Q. Fu, Y. Hou, L. Luo, W. Li, ACS Omega 4, 1000–1006 (2019)

    Article  CAS  Google Scholar 

  21. A. Singh, S.B. Narang, K. Singh, P. Sharma, O.P. Pandey, Eur. Phys. J. Appl. Phys. 33, 189 (2006)

    Article  CAS  Google Scholar 

  22. P. Balaya, V.K. Shrikhande, G.P. Kothiyal, P.S. Goyal, Curr. Sci. 86, 553 (2004)

    CAS  Google Scholar 

  23. W.Y. Zhou, X. Li, F. Zhang, C.H. Zhang, Z. Li, F.X. Chen, H.W. Cai, X.R. Liu, Compos. Part A-Appl. S. 137, 106021 (2020)

    Article  CAS  Google Scholar 

  24. Z. Wang, X. Wang, N. Zhao, J. He, S. Wang, G. Wu, Y. Cheng, J. Mater. Sci.: Mater. Electron. 32, 20973 (2021)

    CAS  Google Scholar 

  25. B.K. Gan, K. Yao, Ceram. Int. 35(5), 2061 (2009)

    Article  CAS  Google Scholar 

  26. R. Yao, Y. Liu, C. Lyu, N. Xu, Z. Yu, Y. Lyu, J. Mater. Sci.: Mater. Electron. 28, 7525 (2017)

    CAS  Google Scholar 

  27. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, ACS Appl. Mater. Interfaces 9, 19, 16404 (2017)

    Article  CAS  Google Scholar 

  28. K.S. Hemalatha, G. Sriprakash, M.V.N. Ambika Prasad, R. Damle, K. ukmani, J. Appl. Phys. 118, 154103 (2015)

    Article  Google Scholar 

  29. A.K. Jonscher, Nature 253, 717–719 (1975)

    Article  CAS  Google Scholar 

  30. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  31. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  32. S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  33. S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, J. Appl. Phys. 84, 828 (1998)

    Article  CAS  Google Scholar 

  34. S. Mahboob, G. Prasad, G.S. Kumar, Bull. Mater. Sci. 29(1), 35 (2006)

    Article  CAS  Google Scholar 

  35. A. Atta, J. Alloys Compd. 480(2), 564 (2009)

    Article  CAS  Google Scholar 

  36. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008)

    Article  CAS  Google Scholar 

  37. M. Selmi, A. Smida, S.E. Kossi, J. Mater. Sci.: Mater. Electron. 32, 6014 (2021)

    CAS  Google Scholar 

  38. T.A. Abdel-Baset, A.H. Bashal, J. Mater. Sci.: Mater. Electron. 31, 18533 (2020)

    Google Scholar 

  39. C. Ang, Z. Yu, Phys. Rev. B 69, 174109 (2004)

    Article  Google Scholar 

  40. T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett. 76, 3257–3258 (2000)

    Article  CAS  Google Scholar 

  41. F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, Article ID 578168 (2014)

  42. K. Dewhurst, S. Sharma, Development of the elk lapw code, Max Planck Institute of Microstructure Physics https://elk.sourceforge.io/ (2011)

  43. S. Sagmeister, C. Ambrosch-Draxl, Phys. Chem. Chem. Phys. 11(22), 4451 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abou Elfadl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashal, A.H., Abou Elfadl, A. Dielectric properties and AC conductivity of nickel supported on silicon dioxide: facile synthesis and DFT calculation. J Mater Sci: Mater Electron 32, 28033–28041 (2021). https://doi.org/10.1007/s10854-021-07087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07087-8

Navigation