Skip to main content
Log in

Impedance and modulus spectroscopy of poly(vinyl alcohol)-Mg[ClO4]2 salt hybrid films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical and dielectric properties of PVA/Mg[ClO4]2 hybrid films were investigated in the temperature range of 90–150 °C and the frequency range of 20 Hz–10 MHz using impedance and modulus spectroscopy. Impedance and modulus analyses had indicated the temperature independent distribution of relaxation times and the non-Debye behavior in these composites. The co-operative motion due to strong coupling between the mobile Mg2+ ions is assumed to give rise to non-Debye type of relaxation. Complex impedance Nyquist plots are used to interpret the relaxation mechanism. The nature of Nyquist plot confirms the presence of bulk effects, grain boundaries and electrolyte/electrode polarization, and non-Debye type of relaxation processes occurs in the composites. A thermally activated relaxation was observed, which was ascribed to be a non-Debye-type relaxation caused by the mobility of magnesium ion in polymer matrix. A comparison between Z″, imaginary part of complex impedance, and M″, imaginary part of complex electric modulus, indicates that the short- and long-range charge motion dominates at low and high temperatures, respectively. The activation energies, which were obtained from the electric modulus and bulk conductivity, are matched well. The non-coincidence of peaks corresponding to the modulus and impedance indicates deviation from Debye-type relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Bajpai, R. Srivastava, R. Dhar, R.S. Tiwari, S. Chand, Adv. Mater. Lett. 7(5), 414 (2016)

    Article  Google Scholar 

  2. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano. Lett. 13, 1764 (2013)

    Article  ADS  Google Scholar 

  3. Z.S. Guo, L. Zhao, J. Pei, Z.L. Zhou, G. Gibson, J. Brug, S. Lam, S.S. Mao, Macromolecules 43, 1860 (2010)

    Article  ADS  Google Scholar 

  4. S. Coe-Sullivan, W.K. Woo, J.S. Steckel, M. Bawendi, V. Bulovi, Org. Electron. 4, 123 (2003)

    Article  Google Scholar 

  5. T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.M. Goldenberg, J. Stumpe, Nanotechnology 20, 245707 (2009)

    Article  ADS  Google Scholar 

  6. B.C. Das, A.J. Pal, ACS Nano. 2, 1930 (2008)

    Article  Google Scholar 

  7. A. Guchhait, A.K. Rath, A.J. Pal, Chem. Mater. 2, 5292 (2009)

    Article  Google Scholar 

  8. W. Wieczorek, Z. Florjanczyk, J.R. Steven, Electrochim. Acta 40, 2251 (1995)

    Article  Google Scholar 

  9. K. Nagoka, H. Naruse, I. Shinohara, M. Watanabe, J. Polym. Sci. Polym. Lett. 22, 659 (1984)

    Article  Google Scholar 

  10. F.F. Hatta, M.Z.A. Yahya, A.M.M. Ali, R.H.Y. Subban, M.K. Harun, A.A. Mohamed, Ionics 11, 418 (2005)

    Article  Google Scholar 

  11. I.S. Noor, S.R. Majid, A.K. Arof, Electrochim. Acta 102, 149 (2013)

    Article  Google Scholar 

  12. K.S. Hemalatha, G. Sriprakash, M.V.N. Ambika Prasad, R. Damle, K. Rukmani, J. Appl. Phys. 118, 154103 (2015)

    Article  ADS  Google Scholar 

  13. R. Khalil, E. Sheha, T. Hanafy, O. Al-Hartomy, Mater. Express 4, 483 (2014)

    Article  Google Scholar 

  14. T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc. 137, 775 (1990)

    Article  Google Scholar 

  15. M. Vittadello, S. Biscazzo, S. Lavina, M. Fauri, V. Di Noto, Solid State Ion. 147, 341 (2002)

    Article  Google Scholar 

  16. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 407, 724 (2000)

    Article  ADS  Google Scholar 

  17. D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, J. Power Sour 97–98, 28 (2001)

    Article  Google Scholar 

  18. J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 5, 5941 (2012)

    Article  Google Scholar 

  19. J.R. Macdonald, Impedance spectroscopy: emphasizing solid materials and systems (Wiley, New York, 1987)

    Google Scholar 

  20. Y. Shao, N.N. Rajput, J. Hu, M. Hu, T. Liu, Z. Wei, M. Gu, X. Deng, S. Xu, K.S. Han, J. Wang, Z. Nie, G. Li, K.R. Zavadil, J. Xiao, C. Wang, W.A. Henderson, J. Zhang, Y. Wang, K.T. Mueller, K. Persson, J. Liu, Nano Energy 12, 750 (2015)

    Article  Google Scholar 

  21. G.P. Pandey, R.C. Agrawal, S.A. Hashmi, J. Solid State Electrochem. 15, 2253 (2011)

    Article  Google Scholar 

  22. C.C. Wang, J. Wang, X.H. Sun, L.N. Liu, J. Zhang, J. Zheng, C. Cheng, Solid State Commun. 179, 29 (2014)

    Article  ADS  Google Scholar 

  23. J.R. Maccallum, C.A. Vincent (eds.), Polymer electrolyte review I and II (Elsevier, London, 1987)

    Google Scholar 

  24. W.H. Meyer, Adv. Mater. 10, 439 (1998)

    Article  ADS  Google Scholar 

  25. F.M. Gray, Polymer electrolyte, Chap 2 (The RSC Materials Monographs, London, 1997)

    Google Scholar 

  26. R. Khalil, E.M. Sheha, A. Eid, J. Adv. Phys. 6, 102 (2017)

    Article  Google Scholar 

  27. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)

    Article  Google Scholar 

  28. K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 27, 1845 (1988)

    Article  ADS  Google Scholar 

  29. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  Google Scholar 

  30. R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y.G. Shul, J. Power Sour. 171, 922 (2007)  

    Article  ADS  Google Scholar 

  31. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  ADS  Google Scholar 

  32. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  33. C.T. Moynihan, Solid State Ion. 105, 175 (1998)

    Article  Google Scholar 

  34. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 74, 125 (1976)

    Article  Google Scholar 

  35. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  ADS  Google Scholar 

  36. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solids State Ion. 146, 329 (2002)

    Article  Google Scholar 

  37. M. Sural, A. Ghosh, Solid State Ion. 130, 259 (2000)

    Article  Google Scholar 

  38. D.P. Almond, A.R. West, Solid State Ion. 9, 277 (1983)

    Article  Google Scholar 

  39. D.P. Almond, A.R. West, Solid State Ion. 23, 27 (1987)

    Article  Google Scholar 

  40. W. Cao, R. Gerhardt, Solid State Ion. 42, 213 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda Khalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, R. Impedance and modulus spectroscopy of poly(vinyl alcohol)-Mg[ClO4]2 salt hybrid films. Appl. Phys. A 123, 422 (2017). https://doi.org/10.1007/s00339-017-1026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1026-y

Keywords

Navigation