Skip to main content

Advertisement

Log in

Hydrothermal synthesis of reduced graphene oxide for supercapacitor electrode materials and the effect of added sodium alginate on its structure and performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the advantages of high power density, long cycle life, and fast charging, supercapacitor has become a research hotspot in recent decades. Graphene is considered as an ideal electrode material for supercapacitors because of its special electrical and mechanical properties. In order to prepare graphene that can be used as supercapacitor electrode materials, various methods are proposed, among which hydrothermal method is mostly used, but graphene prepared using this method always agglomerates seriously and rarely have pores that might be helpful for the increase of electrochemical performance. Therefore, sodium alginate, which has strong hydrogen bonding with graphene oxide and might be helpful to optimize the structure of graphene in the reduction process, should be considered. In this paper, by optimizing the ratio of reducing agent and graphene oxide in hydrothermal reaction, two samples that exhibit better performance were obtained. On this basis, sodium alginate was added in the process of hydrothermal reduction of graphene oxide, and the effect of it on the structure and properties of graphene was explored. The results demonstrate that pore structure is formed and the rate performance is improved obviously by adding sodium alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Larcher, J.M. Tarascon, Nat. Chem. 7, 19–29 (2015)

    Article  CAS  Google Scholar 

  2. F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219–2251 (2014)

    Article  CAS  Google Scholar 

  3. H. Liu, M. Dai, D. Zhao, X. Wu, B. Wang, ACS Appl. Energy Mater. 3, 7004–7010 (2020)

    Article  CAS  Google Scholar 

  4. M. Dai, D. Zhao, X. Wu, Chin. Chem. Lett. 31, 2177–2188 (2020)

    Article  CAS  Google Scholar 

  5. P. Poizot, F. Dolhem, Energy Environ. Sci. 4, 2003–2019 (2011)

    Article  CAS  Google Scholar 

  6. Y. Liu, X. Wu, Nano Energy 86, 106124 (2021)

    Article  CAS  Google Scholar 

  7. M. Dai, H. Liu, D. Zhao, X. Zhu, A. Umar, H. Algarni, X. Wu, ACS Appl. Nano Mater. 4, 5461–5468 (2021)

    Article  CAS  Google Scholar 

  8. Y. Liu, X. Wu, J Energy Chem. 56, 223–237 (2021)

    Article  Google Scholar 

  9. R. Kotz, M. Carlen, Electrochim Acta 45, 2483–2498 (2000)

    Article  CAS  Google Scholar 

  10. H.S. Chen, T.N. Cong, W. Yang, C.Q. Tan, Y.L. Li, Y.L. Ding, Prog. Nat. Sci. 19, 291–312 (2009)

    Article  CAS  Google Scholar 

  11. L. Zhang, J. Yuan, S. Su, Y. Cui, W. Shi, X. Zhu, J. Wood Chem. Technol. 41, 46–57 (2020)

    Article  CAS  Google Scholar 

  12. H. Liu, D. Zhao, Y. Liu, Y. Tong, X. Wu, G. Shen, Sci. China Mater. 64, 581–591 (2021)

    Article  CAS  Google Scholar 

  13. Z. Zhang, B. Yang, M. Deng, Y. Hu, Chin. J. Power Sources 28, 318–323 (2004)

    CAS  Google Scholar 

  14. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  Google Scholar 

  15. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  16. A. Bouhemadou, D. Allali, K. Boudiaf, B. Al Qarni, S. Bin-Omran, R. Khenata, Y. Al-Douri, J. Alloys Compd. 774, 299–314 (2019)

    Article  CAS  Google Scholar 

  17. M.E.A. Monir, H. Baltach, A. Abdiche, Y. Al-Douri, R. Khenata, S. Bin Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, C.H. Voon, J. Supercond. Novel Magn. 30, 2197–2210 (2017)

    Article  CAS  Google Scholar 

  18. A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, Ş Uğur, B. Ghebouli, S. Bin-Omran, Comput. Mater. Sci. 81, 561–574 (2014)

    Article  CAS  Google Scholar 

  19. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  20. S. Su, L. Lai, R. Li, Y. Lin, H. Dai, X. Zhu, ACS Appl. Energy Mater. 3, 9379–9389 (2020)

    Article  CAS  Google Scholar 

  21. Y. Hai, W. Zhang, B. Wang, G. Cao, Battery Bimonthly 36, 92–94 (2006)

    CAS  Google Scholar 

  22. H. Pan, J.Y. Li, Y.P. Feng, Nanoscale Res. Lett. 5, 654–668 (2010)

    Article  CAS  Google Scholar 

  23. V.C.S. Tony, C.H. Voon, C.C. Lee, B.Y. Lim, S.C.B. Gopinath, K.L. Foo, M.K.M. Arshad, A.R. Ruslinda, U. Hashim, M.N. Nashaain, Y. Al-Douri, Mater Res. Ibero Am. J. 20, 1658–1668 (2017)

    CAS  Google Scholar 

  24. Y. Huang, J.J. Liang, Y.S. Chen, Small 8, 1805–1834 (2012)

    Article  CAS  Google Scholar 

  25. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  CAS  Google Scholar 

  26. N. Guo, Y. Cui, S. Su, L. Lai, L. Zhang, X. Zhu, J. Mater. Sci. Mater. Electron. 32, 6636–6647 (2021)

    Article  CAS  Google Scholar 

  27. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  28. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828–4850 (2011)

    Article  CAS  Google Scholar 

  29. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  30. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano. Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  31. J. Lee, H. Kim, A. Kim, H. Jung, Microporous Mesoporous Mater. 293, 9 (2020)

    Google Scholar 

  32. T. Chen, J. Wei, M. Zhao, Z. Wu, H. Li, J. Electron. Sci. Technol. 31, 36–40 (2018)

    Google Scholar 

  33. Y. Shang, D. Zhang, Y.Y. Liu, C. Guo, Bull. Mater. Sci. 38, 7–12 (2015)

    Article  CAS  Google Scholar 

  34. J.B. Hannon, M. Copel, R.M. Tromp, Phys. Rev. Lett. 107, 166101 (2011)

    Article  CAS  Google Scholar 

  35. F.Z. Qing, Y.T. Hou, R. Stehle, X.S. Li, APL Mater. 7, 5 (2019)

    Article  CAS  Google Scholar 

  36. H.L. Wang, J.T. Robinson, X.L. Li, H.J. Dai, J. Am. Chem. Soc. 131, 9910–9911 (2009)

    Article  CAS  Google Scholar 

  37. L.P. Huang, B. Wu, J.Y. Chen, Y.Z. Xue, D.C. Geng, Y.L. Guo, G. Yu, Y.Q. Liu, Small 9, 1330–1335 (2013)

    Article  CAS  Google Scholar 

  38. X.H. Liu, J.W. Wang, Y. Liu, H. Zheng, A. Kushima, S. Huang, T. Zhu, S.X. Mao, J. Li, S.L. Zhang, W. Lu, J.M. Tour, J.Y. Huang, Carbon 50, 3836–3844 (2012)

    Article  CAS  Google Scholar 

  39. J. Shi, W. Du, Y. Yin, Y. Guo, L. Wan, J. Mater. Chem. A 2, 10830–10834 (2014)

    Article  CAS  Google Scholar 

  40. B.K. Satheeshababu, I. Mohamed, Indian J. Pharm. Sci. 77, 579–585 (2015)

    Article  CAS  Google Scholar 

  41. Y. Al-Douri, K. Gherab, K.M. Batoo, E.H. Raslan, J. Mater. Res. Technol. 9, 5515–5523 (2020)

    Article  CAS  Google Scholar 

  42. X.L. Li, Y.X. Qi, Y.F. Li, Y. Zhang, X.H. He, Y.H. Wang, Bioresour. Technol. 142, 611–619 (2013)

    Article  CAS  Google Scholar 

  43. K. Jeyasubramanian, M. Muthuselvi, G.S. Hikku, E. Muthusankar, J. Colloid Interface Sci. 549, 22–32 (2019)

    Article  CAS  Google Scholar 

  44. Y. You, K.Q. Qu, C. Shi, Z. Sun, Z.H. Huang, J. Li, M.Y. Dong, Z.H. Guo, Int. J. Biol. Macromol. 162, 310–319 (2020)

    Article  CAS  Google Scholar 

  45. L. Nie, C. Liu, J. Wang, Y. Shuai, X. Cui, L. Liu, Carbohydr. Polym. 117, 616–623 (2015)

    Article  CAS  Google Scholar 

  46. V. Purohit, R.N.P. Choudhary, Appl. Phys. A 125, 125 (2019)

    Article  CAS  Google Scholar 

  47. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 4 (2006)

    Google Scholar 

  48. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  49. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  50. S.S. Nanda, M.J. Kim, K.S. Yeom, S.S.A. An, H. Ju, D.K. Yi, Trac. Trends Anal. Chem. 80, 125–131 (2016)

    Article  CAS  Google Scholar 

  51. M. Paillet, R. Parret, J.L. Sauvajol, P. Colomban, J. Raman Spectrosc. 49, 8–12 (2018)

    Article  CAS  Google Scholar 

  52. A. Thakur, S. Kumar, V.S. Rangra, AIP Conf. Proc. 1661, 080032 (2015)

    Article  CAS  Google Scholar 

  53. I. Vlassiouk, S. Smirnov, I. Ivanov, P.F. Fulvio, S. Dai, H. Meyer, M. Chi, D. Hensley, P. Datskos, N.V. Lavrik, Nanotechnology 22, 27571 (2011)

    Article  CAS  Google Scholar 

  54. X. Zhou, T. Meng, F. Yi, D. Shu, Z. Li, Q. Zeng, A. Gao, Z. Zhu, Electrochim Acta 370, 137739 (2021)

    Article  CAS  Google Scholar 

  55. X. Song, T. Shui, W. Zhang, K. Song, X. Shan, D. Zhao, New J. Chem. 45, 1822–1833 (2021)

    Article  CAS  Google Scholar 

  56. W.J. Ye, J.H. Cai, F.Z. Yu, X.Y. Li, X.Y. Wang, Biomass Bioenergy 145, 105949 (2021)

    Article  CAS  Google Scholar 

  57. X. Xiang, E. Liu, Z. Huang, H. Shen, Y. Tian, C. Xiao, J. Yang, Z. Mao, Mater. Res. Bull. 46, 1266–1271 (2011)

    Article  CAS  Google Scholar 

  58. I. Karajagi, K. Ramya, P.C. Ghosh, A. Sarkar, N. Rajalakshmi, RSC Adv. 10, 35966–35978 (2020)

    Article  CAS  Google Scholar 

  59. L. Lai, M. Clark, S. Su, R. Li, D.G. Ivey, X. Zhu, Electrochim Acta 368, 37589 (2021)

    Article  CAS  Google Scholar 

  60. Y.C. Bai, R.B. Rakhi, W. Chen, H.N. Alshareef, J. Power Sources 233, 313–319 (2013)

    Article  CAS  Google Scholar 

  61. G. Wei, M. Qiulin, W. Wei, J. Feifei, S. Shaoxian, J. Chem. Phys. 543, 111096 (2021)

    Google Scholar 

  62. Q. Wang, H.Y. Gao, C.Z. Zhao, H.X. Yue, G.W. Gao, J.G. Yu, Y.U. Kwon, Y.N. Zhao, Electrochim Acta 369, 137700 (2021)

    Article  CAS  Google Scholar 

  63. H.L. Hao, J.J. Wang, Q. Lv, Y.D. Jiao, J. Li, W.Y. Li, I. Akpinar, W.Z. Shen, G.J. He, J. Electroanal. Chem. 878, 114679 (2020)

    Article  CAS  Google Scholar 

  64. G. Lee, C. Lee, C.-M. Yoon, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 9, 5222–5230 (2017)

    Article  CAS  Google Scholar 

  65. L. Kou, Z. Liu, T. Huang, B. Zheng, Z. Tian, Z. Deng, C. Gao, Nanoscale 7, 4080–4087 (2015)

    Article  CAS  Google Scholar 

  66. S.P. Lee, G.A.M. Ali, H.H. Hegazy, H.N. Lim, K.F. Chong, Energy Fuels 35, 4559–4569 (2021)

    Article  CAS  Google Scholar 

  67. K. Zhang, L. Mao, L.L. Zhang, H.S.O. Chan, X.S. Zhao, J.S. Wu, J. Mater. Chem. 21, 7302–7307 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396), Guizhou Science and Technology Program (Grant No. [2020]2Y063-2020QT) and the Fundamental Research Funds for Central Universities. The authors acknowledge the help of Ms. Hui Wang from the Analytical and Testing Center of Sichuan University for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Su, S., Wang, R. et al. Hydrothermal synthesis of reduced graphene oxide for supercapacitor electrode materials and the effect of added sodium alginate on its structure and performance. J Mater Sci: Mater Electron 32, 26688–26699 (2021). https://doi.org/10.1007/s10854-021-07046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07046-3

Navigation