Skip to main content
Log in

Doping-Induced Half-Metallic Ferromagnetism in Vanadium and Chromium-Doped Alkali Oxides K2O and Rb2O: Ab Initio Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electronic structures and magnetic properties of K2O and Rb2O alloys doped simultaneously with Cr and V transition elements were investigated using the full-potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method within the spin-polarized density functional theory (Spin-DFT) and implemented in the WIEN2k package, where the exchange-correlation potential in this approach is described by the generalized gradient approximation with Coulomb repulsion (GGA + U). The substitution of transition metals at 25 % ratio yields the magnetic characteristic of half-metallic ferromagnetism for K2O and Rb2O alloys. The structural properties were estimated in both magnetic and non-magnetic phases, demonstrating the stable ferromagnetic ground phase. The analysis of the electronic structure reveals the excellent half-metallic ferromagnetic nature, with a clear half-metallic gap (E HM) of 0.20 eV for K1.75Cr0.25O alloy. The exploitation of the electronic structure mainly served to determine the spin-polarized exchange-splitting energies Δ x (d) and Δ x (pd) generated by 3d-TM states, shows that the effective potential of the minority spin is more attractive than that of the majority spin. Moreover, the sd exchange constant N 0 α (conduction band) and pd exchange constant N 0 β (valence band) describe their contributions during the exchange splitting process. The magnetic properties have indicated that these alloys acquire a magnetic moment when the non-magnetic system is doped with a transition metal (TM). The obtained results from the important magnetic moments of these alloys indicate the potential for their use in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  2. de Groot, R. A., Mueller, F. M., van Engen, P. G., Buschow, K. H. J.: New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

  3. Jedema, F. J., Filip, A. T., Wees, B. V.: Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345 (2001)

    Article  ADS  Google Scholar 

  4. Lewis, S. P., Allen, P. B., Sasaki, T.: Band structure and transport properties of CrO2. Phys. Rev. B 55, 10253 (1997)

    Article  ADS  Google Scholar 

  5. Galanakis, I.: Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B 71, 012413 (2005)

    Article  ADS  Google Scholar 

  6. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.Ji: Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett. 88, 032503 (2006)

    Article  ADS  Google Scholar 

  7. Soulen, R.J. Jr, Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Barry, A., Coey, J. M. D.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998)

    Article  ADS  Google Scholar 

  8. Kobayashi, K. -I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  9. Nakao, M.: Digital magnetic moment of tetrahedrally bonded half-metallic nanoclusters. Phys. Rev. B 69, 214429 (2004)

    Article  ADS  Google Scholar 

  10. Wang, X., Cheng, Z., Wang, J., Wang, L., Yu, Z., Fang, C., Yang, J., Liu, G.: Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga). RSC Adv. 6, 57041–57047 (2016)

    Article  Google Scholar 

  11. Wang, X. T., Lin, T. T., Rozale, H., Dai, X. F., Liu, G. D.: Robust half-metallic properties in inverse Heusler alloys composed of 4d transition metal elements: Zr2RhZ (Z =Al, Ga, In). J. Magn. Magn. Mater. 402, 190–195 (2016)

    Article  ADS  Google Scholar 

  12. Wang, X. T., Cui, Y. T., Liu, X. F., Liu, G. D.: J, Electronic structures and magnetism in the Li2AgSb-type Heusler alloys, Zr2CoZ (Z =Al, Ga, In, Si, Ge, Sn, Pb, Sb): a first-principles study. J. Magn. Magn. Mater. 394, 50–59 (2015)

    Article  ADS  Google Scholar 

  13. Keen, D.A.: Disordering phenomena in superionic conductors. J. Phys. Condens. Matter 14, R819 (2002)

    Article  ADS  Google Scholar 

  14. Islam, M.M., Bredow, T., Minot, C.: Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O. J. Phys. Chem. B 110, 9413–9420 (2006)

    Article  Google Scholar 

  15. Goel, P., Choudhury, N., Chaplot, S.L.: Superionic behavior of lithium oxide Li2O: a lattice dynamics and molecular dynamics study. Phys. Rev. B 70(1-8), 174307 (2004)

    Article  ADS  Google Scholar 

  16. Donato, A.: A critical review of Li2O ceramic breeder material properties correlations and data. Fusion Eng. Des. 38, 369–392 (1998)

    Article  Google Scholar 

  17. Liu, L., Henrich, V. E., Ellis, W. P., Shindo, I.: Bulk and surface electronic structure of Li2O. Phys. Rev. B 54, 2236 (1996)

    Article  ADS  Google Scholar 

  18. Tanaka, S., Taniguchi, M., Tanigawa, H.: XPS and UPS studies on electronic structure of Li2O. J. Nucl. Mater. 283, 1405 (2000)

    Article  ADS  Google Scholar 

  19. Barrie, A., Street, F. J.: An Auger and X-ray photoelectron spectroscopic study of sodium metal and sodium oxide. J. Electron.Spectrosc. Relat. Phenom. 7, 1 (1975)

    Article  Google Scholar 

  20. Bertel, E., Netzer, F. P., Posina, G., Saalfield, H.: Alkali-metal oxides. I. Molecular and crystal-field effects in photoemission. Phys. Rev. B 39, 6082 (1989)

    Article  ADS  Google Scholar 

  21. Jupille, J., Dolle, P., Besançon, M.: Ionic oxygen species formed in the presence of lithium, potassium and cesium. Surf. Sci. 260, 271 (1992)

    Article  ADS  Google Scholar 

  22. Peterson, L. G., Karlsson, S. E.: Reversible hematologic sequelae of diabetes mellitus. Phys. Scr. 16, 425 (1977)

    Article  ADS  Google Scholar 

  23. Qiu, S. L., Lin, C. L., Chon, J., Strongin, M.: Photoemission studies of the low-temperature reaction of metals and oxygen. Phys. Rev. B 41, 7467 (1990)

    Article  ADS  Google Scholar 

  24. Wong, K.M., Alay-e-Abbas, S.M., Shaukat, A., Fang, Y., Lei, Y.: First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. J. Appl. Phys. 113, 014304 (2013)

    Article  ADS  Google Scholar 

  25. Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations. J. Appl. Phys. 114, 034901 (2013)

    Article  ADS  Google Scholar 

  26. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S. K.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  27. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  28. Perdew, J. P., Burke, S., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  29. Anisimov, V. I., Solovyev, I. V., Korotin, M. A., Czyzyk, M. T., Sawatzky, G. A.: Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  30. Zintl, E., Harder, A., Dauth, B., Elektrochem, Z., Angew: Zeitschrift für anorganische und allgemeine Chemie. Phys. Chem. 40, 588 (1934)

    Google Scholar 

  31. Murnaghan, F. D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shang, S. L., Wang, Y., Kim, D., Liu, Z. -K.: First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010)

    Article  Google Scholar 

  33. Cancarevic, Z., Schon, J.C., Jansen, M.: Stability of alkali-metal oxides as a function of pressure: theoretical calculations. Phys. Rev. B 73, 224114 (2006)

    Article  ADS  Google Scholar 

  34. Mikajlo, E. A., Ford, M. J.: Energy and momentum resolved band structure of K2O: electron momentum spectroscopy and linear combination of atomic orbitals calculation. J. Phys: Condens. Matter 15, 6955 (2003)

    ADS  Google Scholar 

  35. Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M.: On the elastic properties of lithium, sodium and potassium oxide. an ab initio study. Chem. Phys. 156, 11 (1991)

    Article  ADS  Google Scholar 

  36. Moakafi, M., Khenata, R., Bouhemadou, A., Khachai, H., Amrani, B., Rached, D., Rérat, M.: Electronic and optical properties under pressure effect of alkali metal oxides. Eur. Phys. J. B 64, 35–42 (2008)

    Article  ADS  Google Scholar 

  37. Yao, K. L., Gao, G. Y., Liu, Z. L., Zhu, L.: Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study. Solid State Commun. 133, 301 (2005)

    Article  ADS  Google Scholar 

  38. Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75, 174442 (2007)

    Article  ADS  Google Scholar 

  39. Soulen, R. J. Jr, et al.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998)

  40. Zunger, A.: Electronic structure of 3d transition-atom impurities in semiconductors. Solid State Phys. 39, 275 (1986)

    Article  Google Scholar 

  41. Gaj, J. A., Planel, R., Fishman, G.: Relation of magneto-optical properties of free excitons to spin alignment of Mn2+ ions in Cd1−x MnxTe. Solid State Commun. 29, 435–438 (1979)

    Article  ADS  Google Scholar 

  42. Morozzi, V. L., Janak, J. F., Williams, A. R.: Calculated Electronic Properties of Metals. Pergamon, New York (1978)

    Google Scholar 

  43. Yakoubi, A., Baraka, O., Bouhafs, B.: Structural and electronic properties of the Laves phase based on rare earth type BaM2 (M = Rh, Pd, Pt). Results Phys. 2, 58 (2012)

    Article  ADS  Google Scholar 

  44. Zeng, Z. H., Calle-Vallejo, F., Mogensen, M. B., Rossmeisl, J.: Generalized trends in the formation energies of perovskite oxides. Phys. Chem. Chem. Phys. 15, 7526 (2013)

    Article  Google Scholar 

  45. Rai, D. P., Shankar, A., Sandeep, M. P., Khenata, R., Thapa, R. K.: Ghimire Study of the enhanced electronic and thermoelectric (TE) properties of Zr x Hf1−xy Ta y NiSn: a first principles study. RSC Adv. 5, 95353 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors (A. Bouhemadou and S. Bin-Omran) extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through JSPP# 0025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine Monir, M.E., Baltach, H., Abdiche, A. et al. Doping-Induced Half-Metallic Ferromagnetism in Vanadium and Chromium-Doped Alkali Oxides K2O and Rb2O: Ab Initio Method. J Supercond Nov Magn 30, 2197–2210 (2017). https://doi.org/10.1007/s10948-017-4021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4021-9

Keywords

Navigation