Skip to main content
Log in

An electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates a novel electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials. Pt and Ni layer were sputtered on the substrate and then annealed to form bimetallic PtNi materials, which served as sensitive materials for glucose detection. The effect of annealing temperature on the performance of enzyme-free glucose sensors had been studied deeply. Using micro-electromechanical systems (MEMS) technology, a monolithic enzyme-free glucose sensor was fabricated, which integrated with working electrode (WE) and counter electrode (CE) on a chip. The electrochemical results demonstrate that the device exhibits outstanding sensitivity and selectivity for glucose detection, achieving a maximal sensitivity of 1618.15 µA mM−1 cm−2 in the range of 0–10 mM with a low detection limit of 8.76 µM. The sensor also shows its practical application for glucose detection in human blood serum. Due to its performance and fabrication process, the enzyme-free glucose sensor is therefore well suited for glucose detection and manufacture together with other integrated circuits on a single silicon wafer, which shows potentials in implantable microelectronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Wang, W. Zhu, W. Lu, X. Qin, X. Xu, Biosens. Bioelectron. 111, 41 (2018). https://doi.org/10.1016/j.bios.2018.03.067

    Article  CAS  Google Scholar 

  2. W.-C. Lee, K.-B. Kim, N.G. Gurudatt et al., Biosens. Bioelectron. 130, 48 (2019). https://doi.org/10.1016/j.bios.2019.01.028

    Article  CAS  Google Scholar 

  3. P. Nasr-Esfahani, A.A. Ensafi, B. Rezaei, Electroanalysis 31, 40 (2019). https://doi.org/10.1002/elan.201800572

    Article  CAS  Google Scholar 

  4. S. Fu, G. Fan, L. Yang, F. Li, Electrochim. Acta 152, 146 (2015). https://doi.org/10.1016/j.electacta.2014.11.115

    Article  CAS  Google Scholar 

  5. M.L. Chelaghmia, M. Nacef, A.M. Affoune, M. Pontie, T. Derabla, Electroanalysis 30, 1117 (2018). https://doi.org/10.1002/elan.201800002

    Article  CAS  Google Scholar 

  6. A. Calio, P. Dardano, V. Di Palma et al., Sens. Actuators B 236, 343 (2016). https://doi.org/10.1016/j.snb.2016.05.156

    Article  CAS  Google Scholar 

  7. A. Laura Rinaldi, S. Sobral, R. Carballo, Electroanalysis 29, 1961 (2017). https://doi.org/10.1002/elan.201700187

    Article  CAS  Google Scholar 

  8. G. Ni, J. Cheng, X. Dai et al., Electroanalysis 30, 2366 (2018). https://doi.org/10.1002/elan.201800362

    Article  CAS  Google Scholar 

  9. N. Yen-Linh, HLe. Thi, J.S. Thuy, S.H. Chung, Hur, J. Alloy. Compd. 712, 742 (2017). https://doi.org/10.1016/j.jallcom.2017.04.131

    Article  CAS  Google Scholar 

  10. N. Pal, S. Banerjee, A. Bhaumik, J. Colloid Interface Sci. 516, 121 (2018). https://doi.org/10.1016/j.jcis.2018.01.027

    Article  CAS  Google Scholar 

  11. J. Chen, X. Zhu, Y. Ju, B. Ma, C. Zhao, H. Liu, Sens. Actuators B 285, 56 (2019). https://doi.org/10.1016/j.snb.2019.01.017

    Article  CAS  Google Scholar 

  12. S. Zhao, C. Shi, H. Hu et al., Biosens. Bioelectron. 151, 111962 (2020). https://doi.org/10.1016/j.bios.2019.111962

    Article  CAS  Google Scholar 

  13. E. Rafatmah, B. Hemmateenejad, Sens. Actuators B. (2020). https://doi.org/10.1016/j.snb.2019.127335

    Article  Google Scholar 

  14. S.-L. Zhong, J. Zhuang, D.-P. Yang, D. Tang, Biosens. Bioelectron. 96, 26 (2017). https://doi.org/10.1016/j.bios.2017.04.038

    Article  CAS  Google Scholar 

  15. F. Wang, X. Niu, W. Wang, W. Jing, Y. Huang, J. Zhang, J. Taiwan Inst. Chem. Eng. 93, 87 (2018). https://doi.org/10.1016/j.jtice.2018.08.022

    Article  CAS  Google Scholar 

  16. Z. Ren, H. Mao, H. Luo, Y. Liu, Carbon 149, 609 (2019). https://doi.org/10.1016/j.carbon.2019.04.073

    Article  CAS  Google Scholar 

  17. S. Rajendran, D. Manoj, K. Raju et al., Sens. Actuators B 264, 27 (2018). https://doi.org/10.1016/j.snb.2018.02.165

    Article  CAS  Google Scholar 

  18. P. Yang, X. Wang, C. Ge et al., Appl. Surf. Sci. 494, 484 (2019). https://doi.org/10.1016/j.apsusc.2019.07.197

    Article  CAS  Google Scholar 

  19. S. Cheng, S. Dela Cruz, C. Chen et al., Sens. Actuators B 298, 1–10 (2019). https://doi.org/10.1016/j.snb.2019.126860

    Article  CAS  Google Scholar 

  20. M. Wang, M. Shi, E. Meng, F. Gong, F. Li, Micro Nano Lett. 15, 191 (2020). https://doi.org/10.1049/mnl.2019.0552

    Article  CAS  Google Scholar 

  21. M. Wang, F. Liu, Z. Zhang, E. Meng, F. Gong, F. Li, Nano Brief Rep. Rev. (2020). https://doi.org/10.1142/S1793292021500090

    Article  Google Scholar 

  22. Y. Zhang, Y.-Q. Liu, Y. Bai, W. Chu, J. Sh, Sens. Actuators B 309, 1–10 (2020). https://doi.org/10.1016/j.snb.2020.127779

    Article  CAS  Google Scholar 

  23. X. Lin, Y. Wang, M. Zou, T. Lan, Y. Ni, Chin. Chem. Lett. 30, 1157 (2019). https://doi.org/10.1016/j.cclet.2019.04.009

    Article  CAS  Google Scholar 

  24. S. Pourbeyram, J. Abdollahpour, M. Soltanpour, Mater. Sci. Engi. C 94, 850 (2019). https://doi.org/10.1016/j.msec.2018.10.034

    Article  CAS  Google Scholar 

  25. Y. Li, X. Niu, J. Tang, M. Lan, H. Zhao, Electrochim. Acta 130, 1 (2014). https://doi.org/10.1016/j.electacta.2014.02.123

    Article  CAS  Google Scholar 

  26. V. Vinoth, N. Pugazhenthiran, R. Viswanathan Mangalaraja et al., The Analyst (2020). https://doi.org/10.1039/d0an01526a

    Article  Google Scholar 

  27. T.-P. Wang, B.-D. Hong, Y.-M. Lin, C.-L. Lee, Appl. Catal. B 260, 118140 (2020). https://doi.org/10.1016/j.apcatb.2019.118140

    Article  CAS  Google Scholar 

  28. C. Li, H. Wang, Y. Yamauchi, Chemistry A 19, 2242 (2013). https://doi.org/10.1002/chem.201203378

    Article  CAS  Google Scholar 

  29. K. Shim, W.-C. Lee, M.-S. Park et al., Sens. Actuators B 278, 88 (2019). https://doi.org/10.1016/j.snb.2018.09.048

    Article  CAS  Google Scholar 

  30. D. Ma, X. Tang, M. Guo, H. Lu, X. Xu, Ionics 21, 1417 (2015). https://doi.org/10.1007/s11581-014-1290-1

    Article  CAS  Google Scholar 

  31. R. Wang, X. Liang, H. Liu, L. Cui, X. Zhang, C. Liu, Microchim. Acta 185, 1–10 (2018). https://doi.org/10.1007/s00604-018-2866-7

    Article  CAS  Google Scholar 

  32. M.B. Gholivand, A. Azadbakht, Electrochim. Acta 76, 300 (2012). https://doi.org/10.1016/j.electacta.2012.05.037

    Article  CAS  Google Scholar 

  33. Y. Sun, H. Yang, X. Yu, H. Meng, X. Xu, RSC Adv. 5, 70387 (2015). https://doi.org/10.1039/c5ra13383a

    Article  CAS  Google Scholar 

  34. H. Mei, W. Wu, B. Yu et al., Electroanalysis 28, 671 (2016). https://doi.org/10.1002/elan.201500558

    Article  CAS  Google Scholar 

  35. R. Li, X. Deng, L. Xia, Sci. Rep. 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-73567-2

    Article  CAS  Google Scholar 

  36. D. Rotake, A.D. Darji, Mater. Today Proc. 5, 1530 (2018). https://doi.org/10.1016/j.matpr.2017.11.242

    Article  CAS  Google Scholar 

  37. J. Lee, N.J. Choi, H.K. Lee et al., Sens. Actuators B 248, 957 (2017). https://doi.org/10.1016/j.snb.2017.02.040

    Article  CAS  Google Scholar 

  38. F. Teng, X. Wang, C. Shen, S. Li, Microsyst. Technol. 21, 1337 (2015). https://doi.org/10.1007/s00542-014-2159-y

    Article  CAS  Google Scholar 

  39. M.-Z. Yang, C.-L. Dai, C.-B. Hung, Microelectron. Eng. 97, 353 (2012). https://doi.org/10.1016/j.mee.2012.05.050

    Article  CAS  Google Scholar 

  40. Y. Zhao, L. Fan, B. Hong et al., Sens. Actuators B 231, 800 (2016). https://doi.org/10.1016/j.snb.2016.03.115

    Article  CAS  Google Scholar 

  41. Y. Hu, F. He, A. Ben, C. Chen, J. Electroanal. Chem. 726, 55 (2014). https://doi.org/10.1016/j.jelechem.2014.05.012

    Article  CAS  Google Scholar 

  42. H. Gao, F. Xiao, C.B. Ching, H. Duan, ACS Appl. Mater. Interfaces 3, 3049 (2011). https://doi.org/10.1021/am200563f

    Article  CAS  Google Scholar 

  43. Q. Sheng, H. Mei, H. Wu, X. Zhang, S. Wang, Sens. Actuators B 203, 588 (2014). https://doi.org/10.1016/j.snb.2014.06.090

    Article  CAS  Google Scholar 

  44. S. Jiang, Q. Chen, J. Lin, G. Liao, T. Shi, L. Qian, Sens. Actuators B 345, 130364 (2021). https://doi.org/10.1016/j.snb.2021.130364

    Article  CAS  Google Scholar 

  45. Y. Zhang, D. Zheng, S. Liu et al., Appl. Surf. Sci. 552, 149529 (2021). https://doi.org/10.1016/j.apsusc.2021.149529

    Article  CAS  Google Scholar 

  46. L. Wang, Y. Zhang, Y. Xie et al., Appl. Surf. Sci. 402, 47 (2017). https://doi.org/10.1016/j.apsusc.2017.01.062

    Article  CAS  Google Scholar 

  47. A. Scandurra, F. Ruffino, S. Sanzaro, M.G. Grimaldi, Sens. Actuators B 301, 127113 (2019). https://doi.org/10.1016/j.snb.2019.127113

    Article  CAS  Google Scholar 

  48. Z. Zhao, Q. Li, Y. Sun et al., Sens. Actuators B 345, 130379 (2021). https://doi.org/10.1016/j.snb.2021.130379

    Article  CAS  Google Scholar 

  49. A. Venkadesh, J. Mathiyarasu, S. Dave, S. Radhakrishnan, Inorg. Chem. Commun. 131, 108779 (2021). https://doi.org/10.1016/j.inoche.2021.108779

    Article  CAS  Google Scholar 

  50. F. Wang, X. Ding, X. Niu, X. Liu, W. Wang, J. Zhang, Carbohyd. Polym. 247, 116647 (2020). https://doi.org/10.1016/j.carbpol.2020.116647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61704157), Research Project of Science and Technology in Henan Province (No. 202102210118, 202102210350), and Doctoral Research Foundation of Zhengzhou University of Light Industry (No. 2015BSJJ055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, F. & Chen, D. An electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials. J Mater Sci: Mater Electron 32, 23445–23456 (2021). https://doi.org/10.1007/s10854-021-06832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06832-3

Navigation