Skip to main content
Log in

Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of Nb2O5 on structural and humidity sensing properties of NiFe2O4 (NF) that has been prepared using mechano-chemical mixing of nickel ferrite with niobium pentoxide [NDNF] was analyzed. FTIR and XRD techniques analyzed the compositional properties of NF and NDNF composites. The appearance of characteristic absorption bands in the FTIR spectrum of NDNF composite with a small shift of NF and Nb2O5 confirmed Nb2O5 interfacial interaction with NF. XRD studies have confirmed phase of the sample. The average crystallite size varies from 13.54 to 30.12 nm. SEM images confirms the particles are agglomeration. Changes in the distribution of grain and the rise in intergranular pores in the composite for adsorption of water are verified by electron SEM images. Increasing nanosized particle agglomeration and enhanced composite crystallization have been verified by TEM images and SAED pattern. The particles size was found to be 12.75 and 13.5 nm for NiFe2O4 and NDNF3, respectively. NDNF3 Composites display a good sensing response of 1190 compare to 6 of NF within the 11% RH – 97% RH range. The NDNF3 composite response and recovery times were 20 s and 30 s, while the NF response and recovery times were 100 s and 140 s, respectively. The sensing process was analyzed based on chemisorption, physisorption and capillary condensation mechanisms. Nanocomposite samples demonstrated stable sensing ability and low hysteresis for humidity. Niobium pentoxide plays a major role in improving Nickel Ferrite's humidity sensing efficiency, therefore making the composite the best suitable for the use in humidity sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Kotresh, Y.T. Ravikiran, H.G. RajPrakash, C.H.V.V. Ramana, S.C. Vijayakumari, S. Thomas, Humidity sensing performance of spin coated polyaniline-carboxy methyl cellulose composite at room temperature. Cellulose 23, 3177–3186 (2016)

    Article  CAS  Google Scholar 

  2. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge. Nanotechnology 22, 335702 (2011)

    Article  CAS  Google Scholar 

  3. F. Fang, J. Futter, A. Markwitz, J. Kennedy, UV and humidity sensing properties of ZnO nanorods prepared by arc discharge method. Nanotechnology 20, 245502 (2009)

  4. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017)

    Article  CAS  Google Scholar 

  5. J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloys Compd. 616, 614–617 (2014)

    Article  CAS  Google Scholar 

  6. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)

    Article  CAS  Google Scholar 

  7. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J Mater Sci: Mater Electron. 27, 11691–11697 (2016)

    CAS  Google Scholar 

  8. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2−xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  CAS  Google Scholar 

  9. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite. J. Mater. Sci. Mater. Electron. 30, 6902–6909 (2019)

    Article  CAS  Google Scholar 

  10. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 30, 5854–5865 (2019)

    Article  CAS  Google Scholar 

  11. F. Gandomi, S.M. Peymani-Motlagh, M. Rostami, A. Sobhani-Nasab, M. Fasihi-Ramandi, M. Eghbali-Arani, R. Ahmadian, N. Gholipour, M. Rahimi-Nasrabadi, M.R. Ganjali, Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. J. Mater. Sci. Mater. Electron. 30, 19691–19702 (2019)

  12. M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A.F. Shojaei, M.D. Rafiee, Facile synthesis and characterization of TiO2–graphene–ZnFe2−xTbxO4 ternary nano-hybrids. J Mater Sci. 52, 7008–7016 (2017)

    Article  CAS  Google Scholar 

  13. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V. Jagadeesh Angadi, Enhanced humidity sensing performance of Samarium doped lanthanum aluminate at room temperature. Sensors Actuators A Phys. 304, 111903 (2020)

  14. I.C. Sathisha, K. Manjunatha, Anna Bajorek, B. Rajesh Babu, B. Chethan, T. Ranjeth Kumar Reddy, Y.T. Ravikiran, V. Jagadeesha Angadi, Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications, J. Alloys Compd. 848, 156577 (2020)

  15. V. Jagadeesha Angadi, H.R. Lakshmiprasanna, K. Manjunatha, Investigation of structural, microstructural, dielectrical and magnetic properties of Bi3+ doped manganese spinel ferrite nanoparticles for photonic applications, bismuth—fundamentals and photonic applications. IntechOpen (2020). ISBN: 978–1–83968–243–8. https://doi.org/10.5772/intechopen.92430

  16. K. Manjunatha, I.C. Sathish, S.P. Kubrin, A.T. Kozakov, T.A. Lastovina, A.V. Nikolskii, K.M. Srinivasamurthy, Mehaboob Pasha, V. Jagadeesha Angadi, Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications. J. Mater. Sci. Mater. Electron. 30, 10162–10171 (2019)

  17. L.P. Babu Reddy, R. Megha, H.G. Raj Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya Kumari, D. Kim, Copper ferrite-yttrium oxide (CFYO) nanocomposite as remarkable humidity sensor. Inorg. Chem. Commun. 99, 180–188 (2019)

  18. S.N. Patil, A.M. Pawar, S.K. Tilakar, B.P. Ladgaonkar, Investigation of magnesium substituted nanoparticles zinc ferrites for relative humidity sensors. Sensors Actuators A 244, 35–43 (2016)

  19. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by ananocasting route. Sensors Actuators B Chem. 181, 802–809 (2013)

    Article  CAS  Google Scholar 

  20. S.M. Ognjanovic, I. Tokic, Z. Cvejic, S. Rakic, V.V. Srdic, Structural and dielectric properties of yttrium substituted nickel ferrites. Mater. Res. Bull. 49, 259–264 (2014)

    Article  CAS  Google Scholar 

  21. V. Jeseentharani, L. Reginamary, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Nanocrystalline spinel NixCu0.8Zn0.2Fe2O4: a novel material for humidity sensing. J. Mater. Sci. 47, 3529–3534 (2012)

  22. R. Megha, Y.T. Ravikiran, S.C. VijayaKumari, S. Thomas, Influence of n-type nickel ferrite in enhancing the AC conductivity of optimized polyaniline-nickel ferrite nanocomposite. Appl. Phys. A Mater. Sci. Process. 123, 245–255 (2017)

    Article  Google Scholar 

  23. A. Sutka, G. Mezinskis, Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6, 128–141 (2012)

    Article  Google Scholar 

  24. C. Xu, S. De, A.M. Balu, M. Ojeda, R. Luque, Mechano chemical synthesis of advanced nanomaterials for catalytic applications. Chem. Commun. 51, 6698–6713 (2015)

    Article  CAS  Google Scholar 

  25. K. Manjunatha, V. Jagadeesha Angadi, R. Rajaramakrishna, U. Mahaboob Pasha, Exploring the structural, dielectric and magnetic properties of 5 mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Novel Magn. 33, 2861–2866 (2020)

  26. K. Manjunatha, V. Jagadeesha Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. de Lázaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, U. Mahaboob Pasha, Structural, electronic and magnetic properties of Sc3+ doped CoCr2O4 nanoparticles, New J. Chem. 44, 14246–14255 (2020)

  27. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sensors Actuators B Chem. 225, 1869–1877 (2018)

    Article  Google Scholar 

  28. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sensors Actuators B Chem. 115, 589–595 (2006)

    Article  CAS  Google Scholar 

  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)

  30. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Thomas, Influence of n-type nickel ferrite in enhancing the AC conductivity of optimized polyaniline-nickel ferrite nanocomposites. Appl. Phys. A 123, 245–254 (2017)

  31. B. Jeyadevan, C.N. Chinnasamy, K. Sinha, K. Joshi, Mn-Zn ferrite with higher magnetization for temperature sensitive magnetic fluid. J. Appl. Phys 93, 450–455 (2003)

    Google Scholar 

  32. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sensors Actuators A Phys. 167, 332–337 (2011)

    Article  CAS  Google Scholar 

  33. S. Kotresh, Y.T. Ravikiran, S.C. VijayaKumari, T. Chandrasekhar, C.V.V. Ramana, S. Thomas, Solution-based spin cast processed polypyrrole/niobium pentoxide nanocomposite as room temperature liquefied petroleum Gas sensor. Mater. Manuf. Processes 31, 1976–1982 (2016)

    Article  CAS  Google Scholar 

  34. M. Kooti, A. NaghdiSedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J. Mater. Sci. Technol 29, 34–38 (2013)

    Article  CAS  Google Scholar 

  35. G.S. Kumar, J. Akbar, R. Govindan, E.K. Girija, M. Kanagaraj, A novel rhombohedron like nickel ferrite nanostructure: microwave combustion synthesis, structural characterization and magnetic properties. J. Sci. Adv. Mater. Dev. 1, 282–285 (2016)

    Google Scholar 

  36. E.C. Snelling, Soft Ferrites: Properties and Applications, 2nd edn. Butter-Worth, London (2016)

  37. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1995)

    Article  Google Scholar 

  38. L.R. Gosalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 859–863 (2012)

    Article  Google Scholar 

  39. B.P. Rao, O. Caltun, I. Dumitru, L. Spinu, Complex permeability spectra of Ni–Zn ferrites doped with V2O5/Nb2O5. J. Magn. Magn. Mater. 304, 749–751 (2006)

    Article  Google Scholar 

  40. K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang, Grain growth and magnetic properties of Nb2O5-doped NiZn ferrites. Jpn. J. Appl. Phys. 47, 7871–7875 (2008)

    Article  CAS  Google Scholar 

  41. A.M. Rabaa, J.B. Ruíza, M.R. Joyab, Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Mater. Res 19, 1381–1387 (2016)

    Article  Google Scholar 

  42. J. Yu, G. Wang, B. Cheng, M. Zhou, Nanostructured titanium dioxide materials: properties, preparation and applications. Appl. Catal. B 69, 171–180 (2007)

    Article  CAS  Google Scholar 

  43. I. Singh, B. Birajdar, Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nanopowder prepared via a solvent-controlled nonaqueous sol-gel route. RSC Adv. 7, 54053 (2017)

    Article  CAS  Google Scholar 

  44. K. Manjunatha, K.M. Srininivasamurthy C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, Siddaling Matteppanavar, N. Sivasankara Reddy, V. Jagadeesha Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci. Mater. Electron. 30, 17202–17217 (2019)

  45. P.M. Faia, C.S. Furtado, A.J. Ferreira, AC impedance spectroscope: a new equivalent circuit for titania thick film humidity sensors. Sensors Actuators B 107, 353–359 (2005)

    Article  CAS  Google Scholar 

  46. I.C. Sathisha, K. Manjunatha, V. Jagadeesha Angadi, B. Chethan, Y.T. Ravikiran, Vinayaka K. Pattar, S.O. Manjunatha, S. Matteppanavar, Enhanced humidity sensing response in Eu3+-doped iron-rich CuFe2O4: a detailed study of structural, microstructural, sensing, and dielectric properties, mineralogy—significance and applications. IntechOpen (2020). ISBN: 978–1–78985–826–6. https://doi.org/10.5772/intechopen.90880.

  47. S.N. Patil, A.M. Pawar, S.K. Tilakar, B.P. Ladgaonkar, Investigation of magnesium substituted nanoparticle zinc ferrites for relative humidity sensors. Sensors Actuators A 244, 35–43 (2016)

    Article  CAS  Google Scholar 

  48. W.D. Lin, H.M. Chang, R.J. Wu, Applied novel sensing material graphene/polypyrrole for humidity sensor. Sensors Actuators B 181, 326–331 (2013)

    Article  CAS  Google Scholar 

  49. Q. Qi, T. Zhang, X. Zheng, L. Wan, Preparation humidity sensing properties of Fe-doped mesoporous silica SBA-15. Sensors Actuators B 135, 255–261 (2008)

    Article  CAS  Google Scholar 

  50. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors Actuators B 23, 135–156 (1995)

    Article  CAS  Google Scholar 

  51. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route. Sensors Actuators B 181, 802–809 (2013)

    Article  CAS  Google Scholar 

  52. V.N. Teresita, A. Manikandan, B.A. Josephine, S. Sujatha, S.A. Antony, Electromagnetic properties and humidity-sensing studies of magnetically recoverable LaMgxFe1−xO3−δ perovskites nano-photocatalysts by sol-gel route. J. Supercond. Novel Magn 29, 1691–1701 (2016)

    Article  CAS  Google Scholar 

  53. V.R. Khadse, S. Thakur, K.R. Patil, P. Patil, Humidity sensing studies of cerium oxide nanoparticles synthesized by non-isothermal precipitation. Sensors Actuators B 203, 229–238 (2014)

    Article  CAS  Google Scholar 

  54. L.P. Babu Reddy, R. Megha, B. Chetan, H.G. Raj Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, D. Kim, Role of molybdenum trioxide in enhancing the humidity sensing performance of magnesium ferrite/molybdenum trioxide composite. Inorg. Chem. Commun. 98, 68–74 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jagadeesha Angadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, L.P.B., Prakash, H.G.R., Ravikiran, Y.T. et al. Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method. J Mater Sci: Mater Electron 31, 21981–21999 (2020). https://doi.org/10.1007/s10854-020-04701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04701-z

Navigation