Skip to main content
Log in

Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of plasmon–phonon interaction on the vibrational properties of the MgxZn1-xO films on anisotropic substrate is studied versus Mg content (x), film thickness (0.5–20 μm), free carrier concentration (1×1016–5×1018 cm−3) and damping coefficients using infrared reflection spectroscopy. The mathematical model with additive and phenomenological contribution of several oscillators to dielectric permittivity of MgxZn1-xO material was developed. The infrared reflection spectra were simulated in the range of “residual rays” of the film and the substrate for MgxZn1-xO/Al2O3 structures using self-consisted parameters of bulk ZnO, MgO and Al2O3 materials. Based on the Kramers–Kronig relationship, the frequency range where film reflectivity is sensitive to the variation of film doping and thickness was determined. The frequencies and damping coefficients of TO and LO modes of the oscillators, static and high-frequency dielectric permittivity for orientation Ec were obtained with high accuracy. Main attention was paid to the compositions which were in hexagonal structure. Experimental infrared reflection spectra were recorded for the films with x = 0.25 additionally doped with manganese and their simulation was performed based on the model developed. The free carrier concentration and mobility as well as film conductivity were determined. The results obtained showed the utility of infrared reflection spectroscopy for the investigation of textured alloy films. This non-destructive and contactless method can be implemented for the determination of optical properties of other semiconductor films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Born, K. Huang, Dynamical theory of crystal lattices (Oxford University Press, Oxford, 1954), p. 420

    Google Scholar 

  2. YuI Uhanov, Optical properties of semiconductors (Nauka, Moscow, 1977), p. 368

    Google Scholar 

  3. R. Matz, H. Lüth, Conduction-band surface plasmons in the electron-energy-loss spectrum of GaAs(110). Phys. Rev. Lett. 46, 500–503 (1981)

    Article  CAS  Google Scholar 

  4. V.M. Polyakov, A. Elbe, J.A. Schaefer, High-resolution electron energy-loss spectroscopy at epitaxially grown GaAs (100). Appl. Phys. A 60, 567–572 (1995)

    Google Scholar 

  5. E.F. Venger, S.M. Davidenko, A.V. Melnichuk, L.Yu. Melnichuk, Yu.A. Pasechnik, Effect of the plasmon-phonon coupling anisotropy on the reflection coefficient of polar semiconductors ZnO and SiC-6H, Proc. of the Third International EuroConference on Advanced Semiconducotr Devices and Microsystems (ASDAM-2000), Smolenice, Slovakia, October, 16–18, 2000, p. 343–346

  6. A.-M. Husanu, Electron–phonon interaction in zinc oxide. Plasmon–optical phonon coupled modes. Phys. Stat. Sol. B 246, 87–91 (2009)

    Article  CAS  Google Scholar 

  7. A.V. Melnichuk, LYu. Melnichuk, YuA Pasechnik, Surface plasmon–phonon polaritons of hexagonal zinc oxide. Tech. Phys. 43, 52–55 (1998). https://doi.org/10.1134/1.1258935

    Article  Google Scholar 

  8. E.F. Venger, L.Yu. Melnichuk, O.V. Melnichuk, T.V. Shovkoplyas, Guided-wave polaritons in ZnO/6H-SiC structures, Proc. SPIE 5507, XVI International conference on spectroscopy of molecules and crystals, (20 July 2004); https://doi.org/10.1117/12.569812

  9. K. Kloeckner, M. Himmerlich, R.J. Koch, V.M. Polyakov, A. Eisenhardt, T. Haensel, S.I.-U. Ahmed, S. Krischok, J.A. Schaefer, Electron phonon plasmon interaction in MBE-grown indium nitride—a high resolution electron energy loss spectroscopy (HREELS) study. Phys. Stat. Sol. C 7, 173–176 (2010)

    CAS  Google Scholar 

  10. M. Schubert, A. Mock, R. Korlacki, S. Knight, Z. Galazka, G. Wagner, V. Wheeler, M. Tadjer, K. Goto, V. Darakchieva, Longitudinal phonon plasmon mode coupling in β-Ga2O3. Appl. Phys. Lett. 114, 102102 (2019)

    Article  Google Scholar 

  11. I. Markevich, L. Borkovska, Y. Venger, N. Korsunska, V. Kushnirenko, O. Melnichuk, L. Melnichuk, L. Khomenkova, Electrical, optical and luminescent properties of zinc oxide single crystals. Ukr. J. Phys. Rev. 13, 57–76 (2018)

    Google Scholar 

  12. J.A.A. Engelbrecht, K.T. Roro, R. Swanepoel, Infrared characterization of ZnO films on Si substrates. Phys. Stat. Sol. C 5, 566–568 (2008)

    CAS  Google Scholar 

  13. A.V. Melnichuk, Optical and electrophysical properties of thin doped ZnO/SiC 6H films from the IR reflection spectra. Ukr. J. Phys. 43, 1310–1315 (1998)

    CAS  Google Scholar 

  14. O. Melnichuk, L. Melnichuk, B. Tsykaniuk, Z. Tsybrii, P. Lytvyn, C. Guillaume, X. Portier, V. Strelchuk, Y. Venger, L. Khomenkova, N. Korsunska, Investigation of zinc oxide thin films grown using ALD by the methods of IR spectroscopy. Ukr. J. Phys. 61, 1053–1060 (2016)

    Article  Google Scholar 

  15. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  16. S. Gieraltowska, L. Wachinski, B.S. Witkowski, M. Godlewski, E. Guziewicz, Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520, 4694–4697 (2012)

    Article  CAS  Google Scholar 

  17. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonc¸alves, A. Marques, L. Pereira, R. Martins, Recent advances in ZnO transparent thin film transistors. Thin Solid Films 487, 205–211 (2005)

    Article  CAS  Google Scholar 

  18. K. Ellmer, A. Klein, B. Rech, Transparent conductive zinc oxide: Basics and applications in thin film solar cells (Springer, New York, 2008), p. 446

    Book  Google Scholar 

  19. Th Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Appl. Phys. Lett. 84, 5359–5361 (2004)

    Article  CAS  Google Scholar 

  20. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, L.G.K. Wong, Y. Matsumoto, H. Koinuma, Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 77, 2204–2206 (2000)

    Article  CAS  Google Scholar 

  21. Y. Jin, B. Zhang, Y. Shuming, Y. Wang, J. Chen, H. Zhang, C. Huang, C. Cao, H. Cao, R.P.H. Chang, Room temperature UV emission of MgxZn1−xO films. Solid State Commun. 119, 409 (2001)

    Article  CAS  Google Scholar 

  22. T. Takagi, H. Tanaka, S. Fujita, S. Fujita, Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x~0.5) and their application to solar-blind region photodetectors. Jpn. J. Appl. Phys. 42, L401–L403 (2003)

    Article  CAS  Google Scholar 

  23. D. Thapa, J. Huso, J. Lapp, N. Rajabi, J.L. Morrison, M.D. McCluskey, L. Bergman, Thermal stability of ultra-wide-bandgap MgZnO alloys with wurtzite structure. J. Mater. Sci. 29, 16782–16790 (2018)

    CAS  Google Scholar 

  24. I. Markevich, T. Stara, L. Khomenkova, V. Kushnirenko, L. Borkovska, Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Mater. Sci. 3, 508–524 (2016)

    Article  CAS  Google Scholar 

  25. L. Borkovska, L. Khomenkova, I. Markevich, M. Osipyonok, O. Kolomys, S. Rarata, O. Oberemok, O. Gudymenko, A. Kryvko, V. Strelchuk, The effect of high temperature annealing on the photoluminescence of ZnMgO alloys. Phys. Status Solidi A 215, 1800250 (2018)

    Article  Google Scholar 

  26. A. Kaushal, D. Kaur, Effect of Mg content on structural, elecrical and optical properties of Zn1-xMgxO nanocomposite thin films. Solar Energy Mater. Solar Cells 93, 193–198 (2009)

    Article  CAS  Google Scholar 

  27. J. Chen, W.Z. Shen, Long-wavelength optical phonon properties of ternary MgZnO thin films. Appl. Phys. Lett. 83, 2154–2156 (2003)

    Article  CAS  Google Scholar 

  28. A. Ohtomo, M. Kawasaki, Y. Sakurai, T. Yasuba, MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)

    Article  CAS  Google Scholar 

  29. Ye.F. Venger, O.V. Melnichuk, Yu.A. Pasichnyk, Spectroscopy of residual rays, Naukova dumka, Kyiv, 2001, 192 p. (in Ukrainian)

  30. N. Korsunska, L. Borkovska, Yu. Polischuk, O. Kolomys, P. Lytvyn, I. Markevich, V. Strelchuk, V. Kladko, O. Melnichuk, L. Melnichuk, L. Khomenkova, C. Guillaume, X. Portier, Photoluminescence, conductivity and structural study of terbium doped ZnO films grown on different substrates. Mater. Sci. Semicon. Proc. 94, 51–56 (2019)

    Article  CAS  Google Scholar 

  31. O. Melnichuk, L. Melnichuk, B. Tsykaniuk, Z. Tsybrii, P. Lytvyn, C. Guillaume, X. Portier, V. Strelchuk, Ye. Venger, L. Khomenkova, N. Korsunska, Investigation of undoped and Tb-doped ZnO films on Al2O3 substrate by infrared reflection method. Thin Solid Films 673, 136–140 (2019)

    Article  CAS  Google Scholar 

  32. C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, Infrared optical properties of MgxZn1-xO thin films (0 ≤ x≤1): long-wavelength optical phonons and dielectric constants. J. Appl. Phys. 99, 113504 (2006)

    Article  Google Scholar 

  33. E.F. Venger, I.V. Venger, N.O. Korsunska, L.Y. Melnichuk, O.V. Melnichuk, L.Y. Khomenkova, Optical properties of ternary alloys MgZnO in infrared spectrum. Semicond. Phys. Quantum Electron. Optoelectron. 21, 417–423 (2018)

    Article  Google Scholar 

  34. R.H. Lyddane, R.G. Sachs, E. Teller, On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941)

    Article  CAS  Google Scholar 

  35. L. Khomenkova, X. Portier, J. Cardin, F. Gourbilleau, Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering. Nanotechnology 21, 285707 (2010)

    Article  CAS  Google Scholar 

  36. L. Khomenkova, N. Korsunska, C. Labbe, X. Portier, F. Gourbilleau, The peculiarities of structural and optical properties of HfO2-based films co-doped with silicon and erbium. Appl. Surf. Sci. 471, 521–527 (2019)

    Article  CAS  Google Scholar 

  37. V. Romanyuk, N. Dmitruk, V. Karpyna, G. Lashkarev, V. Popovych, M. Dranchuk, R. Pietruszka, M. Godlewski, G. Dovbeshko, I. Timofeeva, O. Kondratenko, M. Taborska, A. Ievtushenko, Optical and electrical properties of highly doped ZnO: al films deposited by atomic layer deposition on si substrates in visible and near infrared region. Acta Phys. Polonica. 129, A36–A40 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of Education and Science of Ukraine (Project 89452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Khomenkova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnichuk, O., Melnichuk, L., Venger, Y. et al. Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures. J Mater Sci: Mater Electron 31, 7539–7546 (2020). https://doi.org/10.1007/s10854-020-03110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03110-6

Navigation