Skip to main content
Log in

Fabrication of Schottky barrier diodes based on ZnO for flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The manufacturing of electronic devices over flexible substrates becomes a very interesting approach for novel applications. However, the possibility to implement the full technological fabrication procedure is limited for the thermal properties of the flexible substrates. In this paper, the synthesis of zinc oxide nanoparticles by solvothermal process at three different temperatures is presented. Nanopowders synthetized at different temperatures by the solvothermal process were characterized by X-ray diffraction, UV–Vis spectroscopy, and scanning electron microscopy, SEM. Characterization results show that, ZnO powders present a hexagonal wurtzite structure, a band gap magnitude around 3.28 eV, and the particle size is reduced as the temperature is increased. Additionally, fabrication of Schottky barrier diodes based on zinc oxide nanoparticles over polyethylene terephthalate (PET) substrates is shown. The maximum temperature used in the diode fabrication was 150 °C, which is compatible with flexible substrates. Electrical characterization of fabricated diodes showed the thermionic emission as the main conduction mechanism. The full diode parameters were extracted from reverse and forward current–voltage characteristic. The extracted parameters were barrier height ~ 0.54 eV, series resistance of 660 Ω, and an ideality factor of 5.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Kim, Jpn. J. Appl. Phys. 53, 02BA02 (2014)

    Article  Google Scholar 

  2. L. Petti, N. Münzenrieder, C. Vogt, H. Faber 3rd, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, Appl. Phys. Rev. 3, 021303 (2016)

    Article  Google Scholar 

  3. Y.S. Rim, S.-H. Bae, H. Chen, N. De Marco, Y. Yang, Adv. Mater. 28, 4415 (2016)

    Article  CAS  Google Scholar 

  4. S. Khan, L. Lorenzelli, R.S. Dahiya, IEEE Sens. J. 15(16), 3164 (2015)

    Article  Google Scholar 

  5. X.A. Zhang, J.X. Zhai, X.K. Yu, L.H. Ding, W.F. Zhang, Thin Solid Films 548, 623 (2013)

    Article  CAS  Google Scholar 

  6. L. Du, J. Zhang, Y. Li, M. Xu, Q. Wang, A. Song, Q. Xin, IEEE Trans. Electron Devices 65(10), 4326 (2018)

    Article  CAS  Google Scholar 

  7. J. Kaczmarski, M.A. Borysiewicz, K. Piskorski, M. Wzorek, M. Kozubal, E. Kamińska, Semicond. Sci. Technol. 33(1), 015010 (2018)

    Article  Google Scholar 

  8. D.H. Lee, K. Nomura, T. Kamiya, H. Hosono, IEEE Electron Device Lett. 32(12), 1695 (2011)

    Article  CAS  Google Scholar 

  9. W.Y. Padrón-Hernández, M.C. Ceballos-Chuc, D. Pourjafari, G. Oskam, J.C. Tinoco, A.G. Martínez-López, G. Rodríguez-Gattorno, Mater. Sci. Semicond. Process. 81, 75 (2018)

    Article  Google Scholar 

  10. A.G. Martinez-Lopez, W.Y. Padron-Hernandez, D. Pourjafari, G. Oskam, G. Rodriguez-Gattorno, M. Estrada, J.C. Tinoco, IEEE Electron Device Lett. 39(12), 1940 (2018)

    Article  CAS  Google Scholar 

  11. C.-H. Lu, C.-H. Yeh, Ceram. Int. 26, 351 (2012)

    Article  Google Scholar 

  12. C.A. David, J. Galceran, C. Rey-Castro, J. Puy, E. Companys, J. Salvador, J. Monné, R. Wallace, A. Vakourov, J. Phys. Chem. C 116, 11758 (2012)

    Article  CAS  Google Scholar 

  13. E.G. Goh, X. Xu, P.G. McCormick, Scr. Mater. 78–79, 49 (2014)

    Article  Google Scholar 

  14. D.B. Patel, K.R. Chauhan, S.H. Park, J. Kim, Mater. Sci. Semicond. Process. 64, 137 (2017)

    Article  CAS  Google Scholar 

  15. H. Zhang, S. Ruan, H. Li, M. Zhang, K. Lv, C. Feng, W. Chen, IEEE Electron Device Lett. 33(1), 83 (2012)

    Article  Google Scholar 

  16. M.A.M. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Mater. Sci. Semicond. Process. 79, 53 (2018)

    Article  CAS  Google Scholar 

  17. A. Ortiz-Conde, F.J. García-Sánchez, Solid State Electron. 144, 33 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by SEP-Mexico under project “PFCE 2019 DES Técnica” and partially by AMEXCID through Grant SRE-2016-1-278320. The authors also thank to M.Sc. Dora Alicia Huerta Quintanilla, M.Sc. Daniel Aguilar, and M.Sc. William Cauich for XRD and SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Martinez-Lopez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinoco, J.C., Hernández, S.A., Rodríguez-Bernal, O. et al. Fabrication of Schottky barrier diodes based on ZnO for flexible electronics. J Mater Sci: Mater Electron 31, 7373–7377 (2020). https://doi.org/10.1007/s10854-019-02736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02736-5

Navigation