Skip to main content

Advertisement

Log in

Significantly enhanced ferroelectric and pyroelectric properties in polyvinylidene fluoride induced by shear force with spin-coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric polymers are widely used in wearable energy conversion electronics for their favorable flexibility and pyroelectric properties, such as infrared sensors and energy harvesting devices. In this work, we report a method to greatly enhance the pyroelectric properties of polyvinylidene fluoride (PVDF) by spin-coating. Under the shear stress induced by spin-coating, the crystallization behavior of PVDF has been distinctly improved. As a result, the crystallinity and relative content of β phase achieve 40% and 97% in PVDF and the polarization reaches up to 28.2 µC/cm2 at 80 MV/m2. Consequently, the pyroelectric coefficient of spin-coated PVDF film has been raised to as high as 0.92 × 10−8 C/cm2 K at 35 °C, which is significantly superior to those of cast PVDF film, stretched PVDF film, P(VDF-TrFE) film and the PVDF-PZT composite film. This achievement will enable the practically potential for PVDF based pyroelectric polymers in wearable infrared sensors and energy harvesting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Zhang, M. Li, H. Li, Q. Wang, S. Jiang, Energy Technol. 6(5), 791 (2018)

    Article  CAS  Google Scholar 

  2. M. Shen, W. Li, M.Y. Li, H. Liu, J. Xu, S. Qiu, G. Zhang, Z. Lu, H. Li, S. Jiang, J. Euro. Ceram. Soc (2019). https://doi.org/10.1016/j.jeurceramsoc

    Article  Google Scholar 

  3. T. Yu, S. Jiang, B. Fan, Y. Zeng, G. Zhang, P. Liu, Ferroelectrics 494(1), 1 (2016)

    CAS  Google Scholar 

  4. T. Yu, G. Zhang, Y. Yu, Y. Zeng, S. Jiang, J. Sensor Actuat. A 223, 159 (2015)

    Article  CAS  Google Scholar 

  5. S. Jiang, P. Liu, X. Zhang, L. Zhang, Q. Li, J. Yao, Y. Zeng, Q. Wang, G. Zhang, J. Alloys Compd. 636, 93 (2015)

    Article  CAS  Google Scholar 

  6. Y. Zeng, F. Yao, G. Zhang, S. Liu, S. Jiang, Y. Yu, J. He, L. Zhang, J. Yi, Ceram. Int. 39(4), 3709 (2013)

    Article  CAS  Google Scholar 

  7. G. Zhang, S. Jiang, Y. Zeng, Y. Zhang, Q. Zhang, Y. Yu, J. Wang, Phys. Status Solidi A 208(11), 2699 (2011)

    Article  CAS  Google Scholar 

  8. G. Zhang, S. Jiang, J. He, J. Wang, Q. Zhang, Y. Zhang, Y. Yu, Phys. Status Solidi A 208(3), 725 (2011)

    Article  CAS  Google Scholar 

  9. Q. Zhang, S. Jiang, Y. Zeng, M. Fan, G. Zhang, Y. Zhang, Y. Yu, J. Wang, J. He, J. Appl. Phys. 109(12), 124111 (2011)

    Article  Google Scholar 

  10. Q. Zhang, S. Jiang, Y. Zeng, Z. Xie, M. Fan, G. Zhang, Y. Zhang, Y. Yu, J. Wang, X. Qin, Mater. Sci. Eng. 176(10), 816 (2011)

    Article  CAS  Google Scholar 

  11. L. Li, X. Zhao, X. Li, B. Ren, Q. Xu, Z. Liang, W. Di, L. Yang, H. Luo, X. Shao, J. Fang, N. Neumann, J. Jiao, Adv. Mater. 26(16), 2580 (2014)

    Article  CAS  Google Scholar 

  12. T. Zou, Z. Dun, H. Cao, M. Zhu, H. Zhou, X. Ke, J. Appl. Phys. 116(10), 55 (2014)

    Article  Google Scholar 

  13. Q. Wang, S. Jiang, Y. Zhang, G. Zhang, L. Xiong, J. Mater. Sci. 22(7), 849 (2011)

    CAS  Google Scholar 

  14. K.S. Tan, W.C. Gan, T.S. Velayutham, W.H. Majid, Smart. Mater. Struct. 23(12), 125006 (2014)

    Article  Google Scholar 

  15. A.H. Franzan, N.F. Leite, L.C.M. Miranda, J. Appl. Phys. A 50(4), 431 (1990)

    Article  Google Scholar 

  16. E. Fukada, J. Phas. Trans. 18(3–4), 7 (1989)

    Google Scholar 

  17. R.G. Kepler, R.A. Anderson, R.R. Lagasse, Ferroelectrics 57(1), 151 (1984)

    Article  CAS  Google Scholar 

  18. A.J. Lovinger, Polymer 22(3), 412 (1981)

    Article  CAS  Google Scholar 

  19. L. Zhu, Q. Wang, Macromolecules 45(7), 2937 (2012)

    Article  CAS  Google Scholar 

  20. A.J. Lovinger, Science 220(4602), 1115 (1983)

    Article  CAS  Google Scholar 

  21. A. Salimi, A.A. Yousefi, Polym. Test 22(6), 699 (2003)

    Article  CAS  Google Scholar 

  22. P. Martins, C.M. Costa, G. Botelho, S. Lanceros-Mendez, J. Barandiaran, J. Gutierrez, Mater. Chem. Phys. 131(3), 698 (2012)

    Article  CAS  Google Scholar 

  23. S. Chen, K. Yao, F.E.H. Tay, L.L.S. Chew, J. Appl. Polym. Sci. 116(6), 3331–3337 (2010)

    CAS  Google Scholar 

  24. H. Nguyen, A. Navid, L. Pilon, J. Appl. Therm. Eng. 30(14–15), 2127 (2010)

    Article  CAS  Google Scholar 

  25. R.G. Jr, N.C.P.D.S. Nociti, J. Phys. D Appl. Phys. 28(2), 432 (1999)

  26. R. Gregorio, R.C. Capitão, J. Mater. Sci. 35(2), 299 (2000)

    Article  CAS  Google Scholar 

  27. S. Garain, T.K. Sinha, P. Adhikary, K. Henkel, S. Sen, S. Ram, ACS Appl. Mater. Inter. 7(2), 1298 (2015)

    Article  CAS  Google Scholar 

  28. D.M. Correia, R. Gonçalves, C. Ribeiro, V. Sencadas, G. Botelho, J.L.G. Ribelles, RSC Adv. 4(62), 33013 (2014)

    Article  CAS  Google Scholar 

  29. Y. Kong, J.N. Hay, Polymer 43(14), 3873 (2002)

    Article  CAS  Google Scholar 

  30. R.J. Gregorio, M. Cestari, J. Polym. Sci. 32(5), 859 (1994)

    Article  CAS  Google Scholar 

  31. H. Shaik, S.N. Rachith, K.J. Rudresh, A.S. Sheik, K.H.T. Raman, P. Kondaiah, J. Polym. Res. 24(3), 35 (2017)

    Article  Google Scholar 

  32. S.J. Kang, Y.J. Park, J. Sung, P.S. Jo, C. Park, Appl. Phys. Lett. 92(1), 243 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge National Natural Science Foundation of China (Grant Nos. 51772108, 61675076, and 61705070), China Postdoctoral Science Foundation (Grant Nos. 2017M612449 and 2017T200545), Shenzhen Science and Technology Project (JCYJ201703071551154,JCYJ20170818170222368 and JCYJ20180507182248925), the National Key Research and Development Plan (2016YFB04027), the Natural Science Foundation of Hubei Province of China (Grant No. 2018CFB427), the Fundamental Research Funds for the Central Universities (2018KFYYXJJ052). We would also like to acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Yu Li or Shenglin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Weng, L., Bao, R. et al. Significantly enhanced ferroelectric and pyroelectric properties in polyvinylidene fluoride induced by shear force with spin-coating. J Mater Sci: Mater Electron 30, 12540–12544 (2019). https://doi.org/10.1007/s10854-019-01614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01614-4

Navigation