Skip to main content

Advertisement

Log in

Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blend (50/50 wt%) and mixed-phase (anatase and rutile) titanium dioxide (TiO2) nanoparticles are used as organic host matrix and inorganic nanofiller, respectively, for the preparation of hybrid polymer nanocomposite (PNC) films (i.e. (PEO/PVP)–x wt% TiO2; x = 0, 1, 3, 5, 10, and 15) by solution casting method with deionized water as solvent. These PNC films are characterized by employing SEM, FTIR, XRD, UV–Vis, DSC, and DRS techniques. The effect of TiO2 nanofiller loading on the structural, morphological, thermal, optical, dielectric, and electrical properties of the PEO/PVP blend matrix, and also on the chain segmental dynamics of PEO in the PNC structures is investigated. It is revealed that the crystalline phase and spherulite morphology of PEO, and the polymer–polymer interactions in these PNC films have been primarily modified by the polymer–nanoparticle interactions. The optical energy band gap decreases, whereas UV absorbance enhances non-linearly with the increase of TiO2 concentration in the PNC films. The enthalpy of melting of the PEO irregularly reduces when the incorporated amount of TiO2 enhances in these films. The real part of complex permittivity and the dielectric loss tangent of these materials are found frequency independent in the range from 20 kHz to 1 MHz but these parameters increase non-linearly from ~ 1.6 to 2 and 0.006–0.008, respectively with the increase of TiO2 concentration up to 10 wt%, at 30 °C. The dominant contribution of interfacial polarization process increases the real part of complex permittivity of these PNC materials by about 1.3 times with the decrease of frequency from 20 kHz to 20 Hz which further enhances with the increment in the temperature of the film. The electrical behaviour of these materials has been examined by analyzing their ac electrical conductivity, complex impedance, and electric modulus spectra over the frequency range 20 Hz–1 MHz. The dc electrical conductivity of these PNC materials enhances nonlinearly with the increase of TiO2 loading in the PEO/PVP blend matrix. The optical and dielectric parameters of these flexible-type PNC materials confirm their multifunctional properties as UV absorber, optical energy band gap tuner, low permittivity tunable nanodielectric, electrical conductivity regulator, and novel host matrix for ion conducting materials. The results infer that these innovative technologically advanced engineered materials can be potential candidates for the next generation microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Huang, C. Zhi, Polymer Nanocomposites: Electrical and Thermal Properties (Springer, Cham, 2016)

    Google Scholar 

  2. D. Ponnamma, K.K. Sadasivuni, J.-J. Cabibihan, M.A.A. Al-Maadeed, Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing and Shape Memory Applications (Springer, Cham, 2017)

    Book  Google Scholar 

  3. S. Vinoth, G. Kanimozhi, H. Kumar, E.S. Srinadhu, N. Satyanarayana, High conducting nanocomposite electrospun PVDF-HFP/TiO2 quasi-solid electrolyte for dye-sensitized solar cell. J. Mater. Sci.: Mater. Electron. 30, 1199–1213 (2019)

    CAS  Google Scholar 

  4. W.-H. Zhong, B. Li, Polymer Nanocomposites for Dielectrics (CRC Press, Taylor & Francis Group, Pan Stanford Publishing Pte. Ltd., New York, 2017)

    Book  Google Scholar 

  5. T. Tanaka, A.S. Vaughan, Tailoring of Nanocomposite Dielectrics: From Fundamentals to Devices and Applications (Temasek Boulevard, Pan Stanford Publishing Pte. Ltd., Singapore, 2017)

    Google Scholar 

  6. T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf. Coat. Technol. 206, 742–752 (2011)

    Article  CAS  Google Scholar 

  7. L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 7, 20084 (2017)

    Article  CAS  Google Scholar 

  8. F. Mao, Z. Shi, J. Wang, C. Zhang, C. Yang, M. Huang, Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv. Compos. Hybrid Mater. 1, 548–557 (2018)

    Article  Google Scholar 

  9. F.S. Al-Hazmi, D.M. de Leeuw, A.A. Al-Ghamdi, F.S. Shokr, Synthesis and characterization of novel Cu2O/PVDF nanocomposites for flexible ferroelectric organic electronic memory devices. Curr. Appl. Phys. 17, 1181–1188 (2017)

    Article  Google Scholar 

  10. D. Mombrú, M. Romero, R. Faccio, A.W. Mombrú, Raman and impedance spectroscopy under applied dc bias insights on the electrical transport for donor:acceptor nanocomposites based on poly(vinyl carbazole) and TiO2 quantum dots. J. Phys. Chem. C 121, 23383–23391 (2017)

    Article  CAS  Google Scholar 

  11. E. Bet-moushoul, Y. Mansourpanah, Kh Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016)

    Article  CAS  Google Scholar 

  12. S. Botsi, C. Tsamis, M. Chatzichristidi, G. Papageorgiou, E. Makarona, Facile and cost-efficient development of PMMA-based nanocomposites with custom-made hydrothermally-synthesized ZnO nanofillers. Nano-Struct. Nano-Objects 17, 7–20 (2019)

    Article  CAS  Google Scholar 

  13. M.A. Morsi, M. Abdelaziz, A.H. Oraby, I. Mokhles, Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solids 125, 103–114 (2019)

    Article  CAS  Google Scholar 

  14. R. Kandulna, R.B. Choudhary, R. Singh, B. Purty, PMMA–TiO2 based polymeric nanocomposite material for electron transport layer in OLED application. J. Mater. Sci.: Mater. Electron. 29, 5893–5907 (2018)

    CAS  Google Scholar 

  15. S. Choudhary, R.J. Sengwa, Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 247, 924–941 (2017)

    Article  CAS  Google Scholar 

  16. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ionics 324, 247–259 (2018)

    Article  CAS  Google Scholar 

  17. M. Sasikumar, N.P. Subiramaniyam, Microstructure, electrical and humidity sensing properties of TiO2/polyaniline nanocomposite films prepared by sol–gel spin coating technique. J. Mater. Sci.: Mater. Electron. 29, 7099–7106 (2018)

    CAS  Google Scholar 

  18. R. Kaur, J. Singh, S.K. Tripathi, Incorporation of inorganic nanoparticles into an organic polymer matrix for data storage application. Curr. Appl. Phys. 17, 756–762 (2017)

    Article  Google Scholar 

  19. S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18, 1041–1058 (2018)

    Article  Google Scholar 

  20. R. Ambrosio, A. Carrillo, M.L. Mota, K. de la Torre, R. Torrealba, M. Moreno, H. Vazquez, J. Flores, I. Vivaldo, Polymeric nanocomposites membranes with high permittivity based on PVA-ZnO nanoparticles for potential applications in flexible electronics. Polymers 10, 1370 (2018)

    Article  CAS  Google Scholar 

  21. L. Li, S. Li, Y. Shao, R. Dou, B. Yin, M. Yang, PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr. Appl. Phys. 18, 388–396 (2018)

    Article  Google Scholar 

  22. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M. Al‐Ali AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 134, 44427 (2017)

    Article  CAS  Google Scholar 

  23. S. Choudhary, R.J. Sengwa, Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J. Polym. Res. 24, 54 (2017)

    Article  CAS  Google Scholar 

  24. R.J. Sengwa, S. Choudhary, P. Dhatarwal, Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv. Compos. Hybrid Mater. 2, 162–175 (2019)

    Article  CAS  Google Scholar 

  25. S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci.: Mater. Electron. 29, 10517–10534 (2018)

    CAS  Google Scholar 

  26. S. Choudhary, R.J. Sengwa, Investigation on structural and dielectric properties of silica nanoparticles incorporated poly(ethylene oxide)/poly(vinyl pyrrolidone) blend matrix based nanocomposites. J. Inorg. Organomet. Polym Mater. 29, 592–607 (2019)

    Article  CAS  Google Scholar 

  27. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci.: Mater. Electron. 29, 1992–2000 (2018)

    CAS  Google Scholar 

  28. M. Khutia, G.M. Joshi, Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J. Mater. Sci.: Mater. Electron. 26, 5475–5488 (2015)

    CAS  Google Scholar 

  29. S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids 121, 196–209 (2018)

    Article  CAS  Google Scholar 

  30. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7, 419–431 (2018)

    Article  CAS  Google Scholar 

  31. K. Naveen Kumar, B. Chandra Babu, S. Buddhudu, Energy transfer based photoluminescence spectra of (Tb3++Sm3+): PEO+PVP polymer nano-composites with Ag nano-particles. J. Lumin. 161, 456–464 (2015)

    Article  CAS  Google Scholar 

  32. B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)

    Article  CAS  Google Scholar 

  33. K. Naveen Kumar, M. Kang, G.B. Kumar, Y.C. Ratnakaram, Energy transfer based photoluminescence properties of co-doped (Er3++Pr3+): PEO+PVP blended polymer composites for photonic applications. Optical Mater. 54, 6–13 (2016)

    Article  CAS  Google Scholar 

  34. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)

    Article  CAS  Google Scholar 

  35. M.A. Morsi, A.M. Abdelghany, UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)

    Article  CAS  Google Scholar 

  36. H.K. Koduru, F. Scarpelli, Y.G. Marinov, G.B. Hadjichristov, P.M. Rafailov, I.K. Miloushev, A.G. Petrov, N. Godbert, L. Bruno, N. Scaramuzza, Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical, and conductivity properties. Ionics 24, 3459–3473 (2018)

    Article  CAS  Google Scholar 

  37. T.V. Nguyen, P.H. Dao, K.L. Duong, Q.H. Duong, Q.T. Vu, A.H. Nguyen, V.P. Mac, T.L. Le, Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Prog. Org. Coat. 110, 114–121 (2017)

    Article  CAS  Google Scholar 

  38. S. Sugumaran, C.S. Bellan, Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik 125, 5128–5133 (2014)

    Article  CAS  Google Scholar 

  39. D. Kang, G. Wang, Y. Huang, P. Jiang, X. Huang, Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl. Mater. Interfaces 10, 4077–4085 (2018)

    Article  CAS  Google Scholar 

  40. Y. Lin, Q. Wei, G. Qian, L. Yao, J.J. Watkins, Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding. Macromolecules 45, 8665–8673 (2012)

    Article  CAS  Google Scholar 

  41. J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide (CRC Press, Taylor & Francis Group, Boca Raton, 2011)

    Google Scholar 

  42. E. Schechtel, Y. Yan, X. Xu, Y. Cang, W. Tremel, Z. Wang, B. Li, G. Fytas, Elastic modulus and thermal conductivity of thiolene/TiO2 nanocomposites. J. Phys. Chem. C 121, 25568–25575 (2017)

    Article  CAS  Google Scholar 

  43. X. Chen, A. Selloni, Introduction: titianium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014)

    Article  CAS  Google Scholar 

  44. P. Pal, A. Ghosh, Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018)

    Article  CAS  Google Scholar 

  45. K. Vignarooban, M.A.K.L. Dissanayake, I. Albinsson, B.-E. Mellander, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266, 25–28 (2014)

    Article  CAS  Google Scholar 

  46. G.-M. Hou, M.-Q. Zhang, Y.-F. Huang, W.-H. Ruan, A TiO2/PEO composite incorporated with in situ synthesized hyper-branched poly(amine-ester) and its application as a polymer electrolyte. RSC Adv. 6, 83406–83411 (2016)

    Article  CAS  Google Scholar 

  47. W. Wang, M. Gu, Y. Jin, Effect of PVP on the photocatalytic behaviour of TiO2 under sunlight. Mater. Lett. 57, 3276–3281 (2003)

    Article  CAS  Google Scholar 

  48. Y. Zhang, M. Park, H.-Y. Kim, M. El-Newehy, K.Y. Rhee, S.-J. Park, Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning. Compos. B Eng. 80, 355–360 (2015)

    Article  CAS  Google Scholar 

  49. S.M. Sadeghi, M. Vaezi, A. Kazemzadeh, R. Jamjah, Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. J. Appl. Polym. Sci. 135, 46337 (2018)

    Article  CAS  Google Scholar 

  50. M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials. Chem. Rev. 114, 9853–9889 (2014)

    Article  CAS  Google Scholar 

  51. W.-K. Wang, J.-J. Chen, X. Zhang, Y.-X. Huang, W.-W. Li, H.-Q. Yu, Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci. Rep. 6, 20491 (2016)

    Article  CAS  Google Scholar 

  52. R.G. Nair, S. Paul, S.K. Samdarshi, High UV/visible light activity of mixed phase titania: a generic mechanism. Sol. Energy Mater. Sol. Cells 95, 1901–1907 (2011)

    Article  CAS  Google Scholar 

  53. E.P. Da Silva, M.E.G. Winkler, W.M. Giufrida, L. Cardozo-Filho, C.G. Alonso, J.B.O. Lopes, A.F. Rubira, R. Silva, Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. J. Colloid Interface Sci. 535, 245–254 (2019)

    Article  CAS  Google Scholar 

  54. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, P. Wojciechowski, Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods. J. Nanomater. 2014, 124814 (2014)

    Article  CAS  Google Scholar 

  55. R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 40617 (2014)

    Article  CAS  Google Scholar 

  56. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    Article  CAS  Google Scholar 

  57. J. Tauc, Optical properties and electronic structure of amorphous semiconductors, in Optical Properties of Solids, ed. by S. Nudelman, S.S. Mitra (Springer, Boston, 1969)

    Google Scholar 

  58. M.A. Morsi, M. Abdelaziz, A.H. Oraby, I. Mokhles, Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solid. 125, 103–114 (2019)

    Article  CAS  Google Scholar 

  59. R.J. Sengwa, S. Choudhary, Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J. Alloys Compd. 701, 652–659 (2017)

    Article  CAS  Google Scholar 

  60. P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J. Phys. Chem. Solids 111, 266–273 (2017)

    Article  CAS  Google Scholar 

  61. S. Javadi, M. Sadroddini, M. Razzaghi-Kashani, P.N.B. Reis, A.A. Balado, Interfacial effects on dielectric properties of ethylene propylene rubber-titania nano- and micro-composites. J. Polym. Res. 22, 162 (2015)

    Article  CAS  Google Scholar 

  62. J. Anandraj, G.M. Joshi, Zirconia sulphate dispersed polymer composites for electronic applications. J. Inorg. Organomet. Polym Mater. 27, 1835–1850 (2017)

    Article  CAS  Google Scholar 

  63. Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 30, 1705662 (2018)

    Article  CAS  Google Scholar 

  64. J. Chen, X. Wang, X. Yu, L. Yao, Z. Duan, Y. Fan, Y. Jiang, Y. Zhou, Z. Pan, High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J. Mater. Chem. C 6, 271–279 (2018)

    Article  CAS  Google Scholar 

  65. P. Lokanatha Reddy, K. Deshmukh, K. Chidambaram, M.M. Nazeer Ali, K.K. Sadasivuni, Y. Ravi Kumar, R. Lakshmipathy, S.K. Khadheer Pasha, Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 4676–4687 (2019)

    Google Scholar 

  66. G. Wang, X. Huang, P. Jiang, Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl. Mater. Interfaces 7, 18017–18027 (2015)

    Article  CAS  Google Scholar 

  67. N. An, H. Liu, Y. Ding, B. Lu, M. Zhang, Fabrication of micro-structures on a PVDF/TiO2 nano-composite film using photocatalytic lithography. Appl. Surf. Sci. 258, 5052–5055 (2012)

    Article  CAS  Google Scholar 

  68. S. Siddabattuni, S.H. Akella, A. Gangula, S. Belliraj, L.A.A. Chunduri, Dielectric properties study of surface engineered nanoTiO2/epoxy composites. Bull. Mater. Sci. 41, 13 (2018)

    Article  CAS  Google Scholar 

  69. P. Hu, Z. Jia, Z. Shen, P. Wang, X. Liu, High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core–shell structured TiO2@BaTiO3 nanoparticles. Appl. Surf. Sci. 441, 824–831 (2018)

    Article  CAS  Google Scholar 

  70. S. Marinel, D.H. Choi, R. Heuguet, D. Agarwal, M. Lanagan, Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int. 39, 299–306 (2013)

    Article  CAS  Google Scholar 

  71. R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos. Sci. Technol. 70, 1621–1627 (2010)

    Article  CAS  Google Scholar 

  72. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Electrical relaxation dynamics in TiO2–polymer matrix composites. Express Polym. Lett. 1, 781–789 (2007)

    Article  CAS  Google Scholar 

  73. M. Halder, A.K. Meikap, Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films. J. Mater. Sci.: Mater. Electron. 30, 4792–4806 (2019)

    CAS  Google Scholar 

  74. R.J. Sengwa, S. Choudhary, Investigation of correlation between dielectric parameters and nanostructures in aqueous solution grown poly(vinyl alcohol)-montmorillonite clay nanocomposites by dielectric relaxation spectroscopy. Express Polym. Lett. 4, 559–569 (2010)

    Article  CAS  Google Scholar 

  75. C. Tsonos, H. Zois, A. Kanapitsas, N. Soin, E. Siores, G.D. Peppas, E.C. Pyrgioti, A. Sanida, S.G. Stavropoulos, G.C. Psarras, Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J. Phys. Chem. Solids 129, 378–386 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (RJS) is grateful to the Department of Science and Technology (DST), New Delhi for providing the experimental facilities through research project No. SR/S2/CMP-09/2002, and the DST–FIST program project No. SR/FST/PSI-134/2008. All the authors highly appreciate Dr. Sukhvir Singh, Emeritus Scientist, CSIR–NPL, New Delhi, for extending the FTIR and UV–Vis measurement facilities. The author (PD) is also thankful to the CSIR, New Delhi for the award of a postdoctoral research associate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Jeewan Sengwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengwa, R.J., Choudhary, S. & Dhatarwal, P. Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci: Mater Electron 30, 12275–12294 (2019). https://doi.org/10.1007/s10854-019-01587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01587-4

Navigation