Skip to main content
Log in

Morphological, linear and nonlinear optical characteristics of PVA/Ac–PVP blend filled with nanoparticles of titania

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticle (NP)-filled poly(vinyl alcohol-co-acetate) [PVA/Ac]–polyvinyl pyrrolidone (PVP) blend composite films were prepared with filler level (FL) ranging from 0.0 to 4.89 wt% by solution casting technique. Scanning electron microscope images showed the uniform distribution of the nanofiller (NF) at low FL and the aggregation of the filler at higher FLs. Energy dispersive X-ray spectrometry was used to determine the elemental constituents present in the composite samples. The ultra violet–visible spectral data of the prepared composite films, obtained in the wavelength range of 190–1000 nm, were exploited to investigate the linear and nonlinear optical properties. The incorporation of TiO2 NPs in PVA/Ac–PVP blend resulted in decrease of the optical bandgap. The type of transition was found to be indirect allowed transition in k-space. The values of linear optical parameters, including absorption coefficient (α), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constants of the composite films increased with increase in FL. Wemple and Didomenico method was used to determine the dispersion parameters. The value of high energy dielectric constant (ε) extracted from two different methods were in good agreement with each other and were found to vary as a function of FL. Linear optical susceptibility (χ(1)) and nonlinear optical parameters such as nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ(3)) were enhanced due to the incorporation of the TiO2 NPs in PVA/Ac–PVP. Sample with FL of 4.89 wt% exhibited a maximum n2 value of 50389.1 × 10–17 esu, while for pure PVA/Ac–PVP blend, it was 1.3 × 10–17 esu. Thus, it can be seen that the incorporation of TiO2 NPs has enhanced the optical properties of the resulting composite, and this material can be considered as a promising material for flexible optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Zidan H M, Abdelrazek E M, Abdelghany A M and Tarabiah A E 2019 J. Mater. Res. Technol. 8 904

    Article  CAS  Google Scholar 

  2. Meyer W H 1998 Adv. Mater. 10 439

    Article  CAS  Google Scholar 

  3. Abdelrazek E M, Asnag G M, Oraby A H, Abdelghany A M, Alshehari A M and Gumaan M S 2020 J. Electron. Mater. 49 6107

    Article  CAS  Google Scholar 

  4. Mohan V M, Bhargav P B, Raja V, Sharma A K and Rao V V R N 2007 Soft Mater. 5 33

    Article  CAS  Google Scholar 

  5. Ngai K S, Ramesh S, Ramesh K and Juan J C 2016 Ionics 22 1259

    Article  CAS  Google Scholar 

  6. Cardona M (ed) 1983 Light scattering in solids I (Berlin, Germany: Springer)

    Google Scholar 

  7. Träger F (ed) 2012 Springer handbook of lasers and optics (New York: Springer)

    Google Scholar 

  8. Bower D I 1997 in I M Ward (ed) Structure and properties of oriented polymers (Dordrecht: Springer) p 181

  9. Baraker B M 2017 Ph.D. Thesis, Karnatak University, Dharwad

  10. Ali F M and Kershi R M 2020 J. Mater. Sci. Mater. Electron. 31 2557

    Article  CAS  Google Scholar 

  11. Badawi A 2020 Appl. Phys. A 126 335

    Article  CAS  Google Scholar 

  12. Hadi A, Hashim A and Al-Khafaji Y 2020 Trans. Electr. Electron. Mater. 21 283

    Article  Google Scholar 

  13. Jebur Q M, Hashim A and Habeeb M A 2019 Trans. Electr. Electron. Mater. 20 334

    Article  Google Scholar 

  14. Sengwa R J and Dhatarwal P 2021 Opt. Mater. 113 110837

    Article  CAS  Google Scholar 

  15. Fischer H 2003 Mater. Sci. Eng. C 23 763

    Article  Google Scholar 

  16. Abdelghany A M, Farea M O and Oraby A H 2021 J. Mater. Sci. Mater. Electron. 32 6538

    Article  CAS  Google Scholar 

  17. Hema S and Sambhudevan S 2021 Chem. Pap. 75 3697

    Article  Google Scholar 

  18. El Sayed S and Sayed A M E 2021 J. Mater. Sci.: Mater. Electron. 32 13719

    Google Scholar 

  19. Turky G and Dawy M 2003 Mater. Chem. Phys. 77 48

    Article  CAS  Google Scholar 

  20. Venkatachalam S 2016 Spectroscopy of polymer nanocomposites (Norwich, UK: William Andrew Publishing) p 130

  21. Stepanov A L 2019 in Pielichowski K and Majka T M (eds) Polymer composites with functionalized nanoparticles (Netherlands: Elsevier) p 325

  22. Soliman T S and Vshivkov S A 2019 J. Non-Cryst. Solids 519 119452

    Article  CAS  Google Scholar 

  23. Kulyk B, Essaidi Z, Luc J, Sofiani Z, Boudebs G, Sahraoui B et al 2007 J. Appl. Phys. 102 113113

    Article  Google Scholar 

  24. Abdullah O G, Aziz S B, Omer K M and Salih Y M 2015 J. Mater. Sci. Mater. Electron. 26 5303

    Article  CAS  Google Scholar 

  25. Iliopoulos K, Kasprowicz D, Majchrowski A, Michalski E, Gindre D and Sahraoui B 2013 Appl. Phys. Lett. 103 231103

    Article  Google Scholar 

  26. Caseri W 2008 Chem. Eng. Commun. C 196 549

    Article  Google Scholar 

  27. Wilson J L, Poddar P, Frey N A, Srikanth H, Mohomed K, Harmon J P et al 2004 J. Appl. Phys. 95 1439

    Article  CAS  Google Scholar 

  28. Burke N A D, Stöver H D H and Dawson F P 2002 Chem. Mater. 14 4752

    Article  CAS  Google Scholar 

  29. Fang J, Tung L D, Stokes K L, He J, Caruntu D, Zhou W L et al 2002 J. Appl. Phys. 91 8816

    Article  CAS  Google Scholar 

  30. Lévy R, Shaheen U, Cesbron Y and Sée V 2010 Nano Rev. 1 4889

    Article  Google Scholar 

  31. Lin M M, Kim H H, Kim H, Muhammed M and Kim D K 2010 Nano Rev. 1 4883

    Article  Google Scholar 

  32. Abdullah O G, Tahir D A and Kadir K 2015 J. Mater. Sci. Mater. Electron. 26 6939

    Article  CAS  Google Scholar 

  33. Abdelghany A M, Abdelrazek E M and Rashad D S 2014 Spectrochim. Acta A 130 302

    Article  CAS  Google Scholar 

  34. Shetty B G, Crasta V and Rajesh K 2020 AIP Conf. Proc. 2269 030092

    Article  CAS  Google Scholar 

  35. Devikala S, Kamaraj P and Arthanareeswari M 2013 Int. Res. J. Pure Appl. Chem. 3 257

    Article  CAS  Google Scholar 

  36. Li S, Lin M M, Toprak M S, Kim D K and Muhammed M 2010 Nano Rev. 1 5214

    Article  Google Scholar 

  37. Cheremisinoff N P 1997 Handbook of engineering polymeric materials (New York: Marcel Dekker Inc.)

    Book  Google Scholar 

  38. Lewis S, Haynes V, Wheeler-Jones R, Sly J, Perks R M and Piccirillo L 2010 Thin Solid Films 518 2683

    Article  CAS  Google Scholar 

  39. Matilainen A and Sillanpää M 2010 Chemosphere 80 351

    Article  CAS  Google Scholar 

  40. Wouters M, Rentrop C and Willemsen P 2010 Prog. Org. Coat. 68 4

    Article  CAS  Google Scholar 

  41. Lewandowska K 2005 Eur. Polym. J. 41 55

    Article  CAS  Google Scholar 

  42. Lobo B and Veena G 2021 Polym-Plast. Technol. Mater. 60 1697

    CAS  Google Scholar 

  43. Bhargav P B, Mohan V M, Sharma A K and Rao V V R N 2009 Curr. Appl. Phys. 9 165

    Article  Google Scholar 

  44. Babu J R, Ravindhranath K and Vijaya Kumar K 2018 Adv. Mater. Sci. Eng. 2018 1

    Article  Google Scholar 

  45. Abarna S and Hirankumar G 2019 Mater. Sci.-Pol. 37 331

    Article  CAS  Google Scholar 

  46. Lee S, Koo B, Shin J, Lee E, Park H and Kim H 2006 Appl. Phys. Lett. 88 162109

    Article  Google Scholar 

  47. Choi J S 2008 J. Inf. Disp. 9 35

    Article  Google Scholar 

  48. Ramesan M T, Varghese M, Jayakrishnan P and Periyat P 2018 Adv. Polym. Technol. 37 137

    Article  CAS  Google Scholar 

  49. Sudheesh P, Sharafudeen K N, Vijayakumar S and Chandrasekharan K 2011 J. Opt. 40 193

    Article  Google Scholar 

  50. Shahenoor Basha S K and Rao M C 2018 Polym. Sci. Ser. A 60 359

    Article  CAS  Google Scholar 

  51. Kumar S, Prajapati G K, Saroj A L and Gupta P N 2019 Physica B 554 158

    Article  CAS  Google Scholar 

  52. Hirankumar G, Selvasekarapandian S, Kuwata N, Kawamura J and Hattori T 2005 J. Power Sour. 144 262

    Article  CAS  Google Scholar 

  53. Abdelrazek E M 2007 Physica B 400 26

    Article  CAS  Google Scholar 

  54. Tauc J 1974 (ed) Optical properties of amorphous semiconductor (London: Plenum Publishing Company Ltd) p 159

  55. Mott N F and Davis E A 1979 (eds) Electronic processes in non-crystalline materials (London: Oxford University Press) p 272

  56. Elashmawi I S, Abdelrazek E M, Ragab H M and Hakeem N A 2010 Physica B 405 94

    Article  CAS  Google Scholar 

  57. Veena G and Lobo B 2021 J. Phys. Condens. Matter 33 255101

    Article  CAS  Google Scholar 

  58. Abdel-Aziz M M, El-Metwally E G, Fadel M, Labib H H and Afifi M A 2001 Thin Solid Films 386 99

    Article  CAS  Google Scholar 

  59. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627

    Article  CAS  Google Scholar 

  60. Tikhonov E A, Ivashkin V A and Ljamec A K 2012 J. Appl. Spectrosc. 79 148

    Article  CAS  Google Scholar 

  61. Tohyama T and Maekawa S 1991 J. Phys. Soc. Jpn. 60 53

    Article  CAS  Google Scholar 

  62. Kaczmarek H and Podgórski A 2007 J. Photochem. Photobiol. A 191 209

    Article  CAS  Google Scholar 

  63. Yakuphanoglu F, Cukurovali A and Yilmaz I 2004 Physica B 351 53

    Article  CAS  Google Scholar 

  64. Hafiz M M, Mahfoz Kotb H, Dabban M A and Abdel-latif A Y 2013 Opt. Laser Techol. 49 188

    Article  CAS  Google Scholar 

  65. Wemple S H and Didomenico M 1971 Phys. Rev. B 3 1338

    Article  Google Scholar 

  66. Wemple S H 1973 Phys. Rev. B 7 3767

    Article  CAS  Google Scholar 

  67. DrDomenico Jr. M and Wemple S H 1969 J. Appl. Phys. 40 720

    Article  Google Scholar 

  68. Abdullah O G, Salh D M, Mohamad A H, Jamal G M, Hawzhin T A, Bakhan S M et al 2021 J. Electron. Mater. 51 675

    Article  Google Scholar 

  69. Mohamad A H, Saeed S R and Abdullah O G 2019 Mater. Res. Express 6 115332

    Article  Google Scholar 

  70. Wemple S H and DiDomenico M 1969 Phys. Rev. Lett. 23 1156

    Article  CAS  Google Scholar 

  71. O’Leary S K, Zukotynski S and Perz J M 1997 J. Non-Cryst. Solids 210 249

    Article  Google Scholar 

  72. Omar M A 2006 Elementary solid state physics (England: Pearson Education Inc.) p 372

  73. Baleva M, Goranova E, Darakchieva V, Kossionides S, Kokkosis M and Jordanov P 2002 Vacuum 69 425

    Article  CAS  Google Scholar 

  74. Moss T S 1959 in Hogarth C A (ed) Optical properties of semiconductors (London: Butterworth Scientific Publications Ltd)

  75. Zemel J N, Jensen J D and Schoolar R B 1965 Phys. Rev. 140 A330

    Article  Google Scholar 

  76. Soliman T S, Vshivkov S A and Elkalashy Sh I 2020 Opt. Mater. 107 110037

    Article  CAS  Google Scholar 

  77. Abomostafa H M 2021 J. Mol. Struct. 1225 129126

    Article  CAS  Google Scholar 

  78. Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlček M 1999 Mater. Lett. 39 122

    Article  Google Scholar 

  79. Gupta V and Mansingh A I 1996 J. Appl. Phys. 80 1063

    Article  CAS  Google Scholar 

  80. Gad S A and Moez A A 2020 J. Inorg. Organomet. Polym. Mater. 30 469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The facilities at the University Science Instrument Centre (USIC) and DST-SAIF, Karnatak University, Dharwad (KUD), have been used for recording UV/VIS spectra. We acknowledge that the SEM images along with EDS spectra were recorded at the Indian Institute of Technology (IIT), Kanpur. Veena acknowledges the receipt of RGNF from UGC, Government of India. The funding was provided by University Grants Commission (Grant No. 2016-17/RGNF-2015-17-SC-KAR-22364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, G., Lobo, B. Morphological, linear and nonlinear optical characteristics of PVA/Ac–PVP blend filled with nanoparticles of titania. Bull Mater Sci 45, 195 (2022). https://doi.org/10.1007/s12034-022-02764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02764-8

Keywords

Navigation