Skip to main content
Log in

Microstructure and mechanical properties of Sn–1.0Ag–0.5Cu solder with minor Zn additions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low silver (Ag) solder alloys e.g., SAC 105 (Sn–1.0Ag–0.5Cu) have attracted a great deal of attention recently due to economic concerns and improved in impact resistance as compared to other SAC solder with higher silver content. This work studies the influence of addition of minor zinc (0.1–0.5 wt%) to SAC105 on the interfacial structure between solder and copper substrate during reflow and after aging. Zn has shown significant solubility in Cu–Sn intermetallic compound (IMC) and formed Cu6(Sn,Zn)5 which resided in the bulk microstructure and at the solder/Cu interface. Results reveal that minor Zn addition decreased the thickness of interfacial Cu6Sn5 IMC after reflow and significantly suppressed the growth of interfacial Cu3Sn after thermal aging without changing the IMC’s morphology. It is suggested that Zn exerts its influence by stabilizing Cu6(Sn,Zn)5 and hindering the flow of Sn and Cu atoms at the solder/IMC and IMC/Cu interface. Nanoindentation results showed that Cu6(Sn,Zn)5 exhibited a higher hardness in comparison to Cu6Sn5 and creep performance of SAC + Zn has improved in comparison to that of SAC105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Official Journal of the European Union, DIRECTIVE 2002/95/EC OF The European Parliament and of the Council (2003)

  2. S.K. Kang, D.Y. Shih, D. Leonard, N.Y. Donald, D.W. Henderson, T. Gosselin, A. Sarkhel, N.Y.C. Goldsmith, JOM 56, 34 (2004)

    Article  CAS  Google Scholar 

  3. C. Handwerker, U. Kattner, K.-W. Moon, Fundamental Properties of Pb-Free Solder Alloys (Springer, New York, 2007)

    Book  Google Scholar 

  4. W. Liu, N.C. Lee, JOM 56, 26 (2007)

    Article  CAS  Google Scholar 

  5. T. Lee, T.R. Bieler, C. Kim, H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Springer, New York, 2015)

    Book  Google Scholar 

  6. A.E. Ahmad, Mater. Des. 52, 663 (2013)

    Article  CAS  Google Scholar 

  7. K.S. Kim, S.H. Huh, K. Suganuma, Microelectron. Reliab. 43, 259 (2003)

    Article  CAS  Google Scholar 

  8. I.E. Anderson, J.W. Walleser, H.F. Laabs, A. Kracher, J. Electron. Mater. 38, 2770 (2010)

    Article  CAS  Google Scholar 

  9. Y.W. Shi, J. Tian, H. Hao, Z. Xia, L.F. Guo, J. Alloys Compd. 453, 180 (2008)

    Article  CAS  Google Scholar 

  10. T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, Mat. Sci. Eng. R. 68, 1 (2010)

    Article  CAS  Google Scholar 

  11. S. Lei, L. Zhang, Adv. Mater. Sci. Eng. 2, 16 (2015)

    Google Scholar 

  12. S.K. Kang, D.Y. Shih, D. Leonard, L. Gignac, D.W. Henderson, S. Cho, J. Electron. Mater. 35, 479–485 (2007)

    Article  Google Scholar 

  13. H.R. Kotadia, O. Mokhtari, O.M. Bottrill, M.P. Clode, M.A. Green, S.H. Mannan, J. Electron. Mater. 39, 2720 (2010)

    Article  CAS  Google Scholar 

  14. M. Cho, S. Kang, S.Y. Shih, DY. J. Electron. Mater. 36, 1501 (2007)

    Article  CAS  Google Scholar 

  15. M. Amagai, Microelectron. Reliab. 48, 1–16 (2008)

    Article  CAS  Google Scholar 

  16. I.E. Anderson, J.W. Walleser, J.L. Harringa, J. Electron. Mater. 38, 2770 (2009)

    Article  CAS  Google Scholar 

  17. C.Y. Chou, S.W. Chen, Acta Mater. 54, 2393 (2006)

    Article  CAS  Google Scholar 

  18. C.C. Yu, J.-G. Duh, Scr. Mater. 65, 783 (2011)

    Article  CAS  Google Scholar 

  19. S. Chen, W. Zhou, P. Wu, J. Electron. Mater. 44, 3920 (2015)

    Article  CAS  Google Scholar 

  20. A.S. Maxwell, M.A. Monclus, N.M. Jennet, G. Dean, Polym. Test 30, 366–371 (2011)

    Article  CAS  Google Scholar 

  21. W.M. Roellig, M. Mueller, K.-J. Wolter, Microelectron. Reliab. 48, 843 (2008)

    Article  CAS  Google Scholar 

  22. V.M.F. Marques, C. Johnston, P.S. Grant, Act. Mater. 61, 2460 (2013)

    Article  CAS  Google Scholar 

  23. V.M.F. Marques, B. Wunderle, C. Johnston, P.S. Grant, Acta Mater. 61, 2471 (2013)

    Article  CAS  Google Scholar 

  24. D. Mu, H. Huang, K. Nogita, Mater. Lett. 86, 46 (2012)

    Article  CAS  Google Scholar 

  25. D. Mu, H. Huang, S.D. Macdonald, K. Nogita, J. Electron. Mater. 42, 304 (2012)

    Article  CAS  Google Scholar 

  26. D. Mu, H. Huang, S.D. McDonald, J. Read, K. Nogita, Mater. Sci. Eng. A 566, 126 (2013)

    Article  CAS  Google Scholar 

  27. P.Y. Chia, A.S.M.A. Haseeb, S.H. Mannan, Materials 9, 430 (2016)

    Article  CAS  Google Scholar 

  28. F. Gao, T. Takemoto, H. Nishikawa, J. Electron. Mater. 35, 905 (2006)

    Article  CAS  Google Scholar 

  29. Y.M. Leong, A.S.M.A. Haseeb, Materials 9, 522 (2016)

    Article  CAS  Google Scholar 

  30. W.C. Oliver, G.M.J. Pharr, Mater. Res. 19, 3 (2004)

    Article  CAS  Google Scholar 

  31. M.A. Meyers, K. Chawla, Mechanical Behavior of materials (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  32. A. LaLonde, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, D.W. Henderson, J. Electron. Mater. 33, 1545 (2004)

    Article  CAS  Google Scholar 

  33. H. Shang, Z.L. Ma, S.A. Belyakov, C.M. Gourlay, J. Alloys Compd. 715, 471 (2017)

    Article  CAS  Google Scholar 

  34. J. Mao, B. Reeves, B. Lenz, D. Ruscitto, D. Lewis, J. Electron. Mater. 46, 6319 (2017)

    Article  CAS  Google Scholar 

  35. K. Subramaniam, Lead-Free Solders: Materials Reliability for Electronics (Wiley, New York, 2012)

    Book  Google Scholar 

  36. D. Swenson, J. Mater. Sci.: Mater. Electron. 18, 39 (2007)

    CAS  Google Scholar 

  37. T. Gancarz, Mater. Lett. 171, 187–190 (2016)

    Article  CAS  Google Scholar 

  38. J.M. Song, J. Mater. Res. 22, 4332–4433 (2007)

    Google Scholar 

  39. C.S. Lee, F.S. Shieu, J. Electron. Mater. 35, 1660–1664 (2006)

    Article  CAS  Google Scholar 

  40. G. Bruggeman, E.B. Kula, Segregation at Interphase Boundaries.Surfaces and Interfaces II (Springer, Boston, 1968)

    Google Scholar 

  41. S.-J.L. Sintering, Sintering (Elsevier, Amsterdam, 2005)

    Google Scholar 

  42. S. Zhou, O. Mokhtari, M.G. Rafique, V.C. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloys Compd. 765, 1243 (2018)

    Article  CAS  Google Scholar 

  43. S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Intermetallics 33, 8 (2013)

    Article  CAS  Google Scholar 

  44. G. Zeng, D. Stuart, D. McDonald, D. Mu, Y. Terada, H. Yasuda, O. Gu, K. Nogita, Intermetallics 54, 20–27 (2014)

    Article  CAS  Google Scholar 

  45. M.S. Park, R. Arroyave, Acta Mater 60, 923 (2012)

    Article  CAS  Google Scholar 

  46. H. Zhang, X.Y. Wang, L.L. Zheng, S. Sampath, Int. J. Heat Mass Transfer. 47, 2191 (2004)

    Article  CAS  Google Scholar 

  47. M.S. Park, R. Arróyave, Acta Mater. 58, 4900 (2010)

    Article  CAS  Google Scholar 

  48. A.C. Fischer-Cripps, Mater. Sci. Eng., A 385, 74 (2004)

    Article  CAS  Google Scholar 

  49. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford, 1982)

    Google Scholar 

  50. H. Ohtani, M. Miyashita, K. Ishida, J. Jpn Inst. Metals 63, 685 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Postgraduate Research Grant (PPP), University of Malaya (Project No. PG176-2016A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. M. A. Haseeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, Y.M., Haseeb, A.S.M.A., Nishikawa, H. et al. Microstructure and mechanical properties of Sn–1.0Ag–0.5Cu solder with minor Zn additions. J Mater Sci: Mater Electron 30, 11914–11922 (2019). https://doi.org/10.1007/s10854-019-01532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01532-5

Navigation