Skip to main content

Advertisement

Log in

Influence of La3+ and V5+ doping on the polarization and impedance behaviour of BaBi2Nb2O9 nano-ceramics prepared by chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect after the incorporation of La3+ and V5+ on BaBi2Nb2O9 ceramics was investigated by the analysis of structural and electrical studies. The materials are synthesized using chemical precursor solution decomposition method. Single orthorhombic phase was established after calcined the precursor mass at 700 °C for 3 h studied using X-ray diffraction study. The morphology of the samples was studied using scanning electron micrograph and transmission electron micrograph. The Curie temperature was increased with increasing substitution. High relaxation behaviour was observed during impedance spectroscopy study. For higher substitution both grain and grain boundary conductivity appears in the samples. The dc activation energy was in the range of 1.13–1.43 eV which are lower than the relaxation activation energy. The polarization of all the samples increases with increasing electric field. BBLNV0.5 showed the highest energy efficiency about 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Wu, G. Cao, J. Mater. Res. 15, 1583 (2000)

    Article  Google Scholar 

  2. C.-C. Leu, L.-R. Yao, C.-P. Hsu, C.-T. Hu, J. Electrochem. Soc. 157, G85 (2010)

    Article  Google Scholar 

  3. M. Verma, A. Tanwar, K. Sreenivas, Mater. Chem. Phys. 209, 159 (2018)

    Article  Google Scholar 

  4. Y. Wu, C. Nguyen, S. Seraji, M. Forbess, S. Limmer, T. Chou, G. Cao, J. Am. Ceram. Soc. 84, 2882 (2001)

    Article  Google Scholar 

  5. H. Liu, Q. Li, J. Ma, X. Chu, Mater. Lett. 76, 21 (2012)

    Article  Google Scholar 

  6. L. Sun, C. Feng, L. Chen, S. Huang, J. Am. Ceram. Soc. 90, 322 (2006)

    Article  Google Scholar 

  7. B.R. Kannan, B.H. Venkataraman, Ferroelectrics 493, 110 (2016)

    Article  Google Scholar 

  8. Y. Wu, G. Cao, Appl. Phys. Lett. 75, 2650 (1999)

    Article  Google Scholar 

  9. S. Cho, H. Youn, D. Kim, T. Kim, K.S. Hong, J. Am. Ceram. Soc. 81, 3038 (1998)

    Article  Google Scholar 

  10. J. Qiu, G.-Z. Liu, M. He, H.-S. Gu, T.-S. Zhou, Physica B 400, 134 (2007)

    Article  Google Scholar 

  11. M. Adamczyk, L. Kozielski, M. Pilch, A. Soszyn, M. Pawełczyk, A. Soszyński, Ceram. Int. 39, 4589 (2013)

    Article  Google Scholar 

  12. B.H. Venkataraman, K.B.R. Varma, Ferroelectrics 315, 45 (2005)

    Article  Google Scholar 

  13. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Appl. Phys. Lett. 76, 2934 (2000)

    Article  Google Scholar 

  14. C.H. Hervoches, P. Lightfoot, J. Solid State Chem. 153, 66 (2000)

    Article  Google Scholar 

  15. S. Huang, C. Feng, L. Chen, X. Wen, Solid State Commun. 133, 375 (2005)

    Article  Google Scholar 

  16. A. Srinivas, F.Y.C. Boey, T. Sritharan, Mater. Sci. Eng. B 123, 222 (2005)

    Article  Google Scholar 

  17. S. Huang, L. Sun, C. Feng, L. Chen, J. Appl. Phys. 99, 076104 (2006)

    Article  Google Scholar 

  18. D. Dhak, P. Pramanik, J. Am. Ceram. Soc. 89, 1014 (2006)

    Article  Google Scholar 

  19. M. Verma, K. Sreenivas, V. Gupta, J. Appl. Phys. 105, 2 (2009)

    Google Scholar 

  20. H.P. Meyers, H.P. Myers, Introductory Solid State Physics (CRC Press, New York, 1997)

    Book  Google Scholar 

  21. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Pearson New International Edition, Harlow, 2014)

    Google Scholar 

  22. Z. Peng, X. Zeng, F. Cao, X. Yang, J. Alloys Compd. 695, 626 (2017)

    Article  Google Scholar 

  23. R. Mukherjee, S. Chanda, C. Bharti, P. Sahu, T.P.P. Sinha, Physica B 422, 78 (2013)

    Article  Google Scholar 

  24. M.R. Joya, J. Barón-Jaimez, J. Barba-Ortega, J. Phys. Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/466/1/012004.

    Google Scholar 

  25. L. Baia, R. Stefan, W. Kiefer, J. Popp, S. Simon, J. Non. Cryst. Solids 303, 379 (2002)

    Article  Google Scholar 

  26. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edn., (Wiley, New York, 2009)

    Google Scholar 

  27. R. Ramaraghavulu, S. Buddhudu, Ferroelectrics 460, 57 (2014)

    Article  Google Scholar 

  28. M. Adamczyk, Z. Ujma, M. Pawełczyk, J. Mater. Sci. 41, 5317 (2006)

    Article  Google Scholar 

  29. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G. Cao, J. Appl. Phys. 90, 5296 (2001)

    Article  Google Scholar 

  30. P. Goel, K.L. Yadav, Physica B 382, 245 (2006)

    Article  Google Scholar 

  31. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2018)

    Book  Google Scholar 

  32. S. Sahoo, S. Das, P.K. Mahapatra, R.N.P. Choudhary, Mater. Chem. Phys. 216, 158 (2018)

    Article  Google Scholar 

  33. M. Sahu, A. Mitra, R.N.P. Choudhary, B.K. Roul, Appl. Phys. A 124, 533 (2018)

    Article  Google Scholar 

  34. A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  35. S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Ceram. Int. 44, 4719 (2018)

    Article  Google Scholar 

  36. J. Rout, R.N.P. Choudhary, Ceram. Int. 44, 11543 (2018)

    Article  Google Scholar 

  37. M.K. Adak, A. Mukherjee, A. Chowdhury, J. Khatun, U.K. Ghorai, D. Dhak, J. Mater. Sci. Mater. Electron. 29, 15847 (2018)

    Article  Google Scholar 

  38. S.K. Patri, P.L. Deepti, R.N.P. Choudhary, B. Behera, J. Electroceramics 40, 338–346 (2018)

    Article  Google Scholar 

  39. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  40. Y.-M. Li, W. Chen, J. Zhou, Q. Xu, X.-Y. Gu, R.-H. Liao, Physica B 365, 76 (2005)

    Article  Google Scholar 

  41. Z. Ujma, M. Adamczyk, J. Hańderek, J. Eur. Ceram. Soc. 18, 2201 (1998)

    Article  Google Scholar 

  42. P. Bräunlich, Thermally Stimulated Relaxation in Solids (Springer-Verlag, New York, 1979)

    Book  Google Scholar 

  43. M.K. Adak, A. Mukherjee, A. Chowdhury, U.K. Ghorai, D. Dhak, J. Alloys Compd. 740, 203 (2018)

    Article  Google Scholar 

  44. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 16, 335 (2005)

    Article  Google Scholar 

  45. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  46. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 84107 (2005)

    Article  Google Scholar 

  47. K.N. Singh, J. World Condens. Matter Phys. 01, 37 (2011)

    Article  Google Scholar 

  48. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  49. M.K. Adak, S.S. Mondal, P. Dhak, S. Sen, D. Dhak, J. Mater. Sci. Mater. Electron. 28, 4676–4683 (2017)

  50. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159 (1983)

    Article  Google Scholar 

  51. M.K. Adak, P. Dhak, A. Kundu, D. Dhak, Adv. Mater. Lett. 7, 852 (2016)

    Article  Google Scholar 

  52. K.N. Singh, P.K. Bajpai, World J. Condens. Matter Phys. 1, 37 (2011)

    Article  Google Scholar 

  53. S.P. Gaikwad, H.S. Potdar, V. Samuel, V. Ravi, Ceram. Int. 31, 379 (2005)

    Article  Google Scholar 

  54. A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Baptista, S.N. Dorogovtsev, Appl. Phys. Lett. 79, 662 (2001)

    Article  Google Scholar 

  55. H. Tao, J. Wu, J. Mater. Sci. Mater. Electron. 28, 16199 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks SERB, DST, New Delhi, India for financial support (Grant No. SR/FT-CS-125, 2010). Author also thanks WB DST, Govt. of West Bengal, India (Grant No. 674(Sanc)/ST/P/S&T/15G/5/2016 dated 09/11/2016) for financial support. M.K. Adak is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India for the Senior Research Fellowship (File No. 09/1156(0004)/18-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Dhak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, J., Adak, M.K., Dhak, P. et al. Influence of La3+ and V5+ doping on the polarization and impedance behaviour of BaBi2Nb2O9 nano-ceramics prepared by chemical route. J Mater Sci: Mater Electron 30, 7065–7079 (2019). https://doi.org/10.1007/s10854-019-01023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01023-7

Navigation