Skip to main content
Log in

Dielectric, impedance and modulus spectroscopy of BaBi2Nb2O9

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Barium Bismuth Niobate (BaBi2Nb2O9) has been synthesized by solid state reaction method. The X-ray diffraction study confirms the formation of compound. Morphological analysis has been carried out from the scanning electron microscopy images and the elemental analysis from the energy dispersive spectroscopy profiles. Investigation of dielectric and ferroelectric properties of the sample was done by varying the temperature from 25 °C - 500 °C in a frequency range of 1 kHz- 1 MHz. At 100 kHz, the phase transition was observed at 214.02°C. Further, this ferroelectric bi-layered perovskite exhibits an interesting relaxor behavior with a strong dispersion of the dielectric permittivity. A detailed study on the impedance spectroscopy over a wide range of temperature and frequency exhibits the contribution of grain ad grain boundary on different electrical parameters. From modulus spectroscopy, the presence of non-Debye type of relaxation in the material has been manifested. The complex modulus plots support the negative temperature coefficient of resistance (NTCR) type behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.A.P. de Arauzo, J.F. Scott, Science 246, 1400 (1989)

    Article  Google Scholar 

  2. A.I. Kingon, Current opinion in solid state and materials science, Elsevier, 1999, p. 39

  3. E.C. Subbarao, J. Am. Ceram. Soc. 45(4), 166–169 (1962)

    Article  Google Scholar 

  4. E.C. Subbarao, J. Phys. Chem. Solids 23(6), 665–676 (1962)

    Article  Google Scholar 

  5. A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Bapista, S.N. Dorogovtsev, Appl. Phy. Lett. 79(5), 662–664 (2001)

    Article  Google Scholar 

  6. C.-H. Lu, C.-Y. Wen, Mater. Lett. 38(4), 278–282 (1999)

    Article  Google Scholar 

  7. Y. Xu, Ferroelectric materials and their applications (Elsevier, Amsterdam, 1991)

    Google Scholar 

  8. L.E. Cross, Ferroelectrics 151(1), 305–320 (1994)

    Article  Google Scholar 

  9. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61(10), 6559–6564 (2000)

    Article  Google Scholar 

  10. S.M. Blake, M.J. Falconer, M. McCreedy, P. Lightfoot, J. Mater. Chem. 7(8), 1609–1613 (1997)

    Article  Google Scholar 

  11. B.J. Ismunandar, Kennedy. J. Mater. Chem. 9, 541 (1999)

    Article  Google Scholar 

  12. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961)

    Google Scholar 

  13. P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, M.E.V. Costa, Ferroelectrics 353(1), 149–153 (2007)

    Article  Google Scholar 

  14. V.V. Shvartsman, M.E. Costa, M. Avdeev, A.L. Kholkin, Ferroelectrics 296(1), 187–197 (2003)

    Article  Google Scholar 

  15. M. Sahni, N. Kumar, S. Singh, A. Jha, S. Chaubey, M. Kumar, M.K. Sharma, J. Mater. Sci. Mater. Electron. 25, 2199 (2014)

    Article  Google Scholar 

  16. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49(12), 7868–7873 (1994)

    Article  Google Scholar 

  17. P. Khatri, B. Behera, R.P.N. Choudhary, Structural and impedance properties of Ca3Nb2O8 ceramics. J. Phys. Chem. Solids 70(2), 385–389 (2009)

    Article  Google Scholar 

  18. R. Ramaraghavulu, S. Buddhudu, Ferroelectrics 460, 57–67 (2014) 1563–5112

    Article  Google Scholar 

  19. H. Vogel, Phys. Z. 22, 645–646 (1921)

    Google Scholar 

  20. G. Fulcher, J. Amer, Ceram. Soc. 8(6), 339–355 (1925)

    Article  Google Scholar 

  21. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106(2), 024102–024110 (2009)

    Article  Google Scholar 

  22. G.I. Skanavi, E.N. Matveeva, Sov. Phys. JETP 3, 905 (1957)

    Google Scholar 

  23. I. Burn, S. Neirman, J. Mater. Sci. 17(12), 3510–3524 (1982)

    Article  Google Scholar 

  24. K.C. Kao, Dielectric phenomena in solids (Elsevier Academic Press, London, UK, 2004)

    Google Scholar 

  25. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49(12), 7868–7873 (1994)

    Article  Google Scholar 

  26. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D. Appl. Phys. 47(27), 275301 (2014)

    Article  Google Scholar 

  27. N. Kumar, S.K. Patri, R.N.P. Choudhary, J. Alloys Compd. 615, 456–460 (2014)

    Article  Google Scholar 

  28. C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67(12), 2437–2441 (2006)

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  30. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86(4), 2215–2219 (1999)

    Article  Google Scholar 

  31. D.C. Sinclair, A.R. West, J. Appl. Phys. 66(8), 3850–3856 (1989)

    Article  Google Scholar 

  32. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132–138 (1990)

    Article  Google Scholar 

  33. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74(2), 125–143 (1976)

    Article  Google Scholar 

  34. M. Azizar Rahman, A.K.M. Akther Hossain, Phys. Scr. 89(11), 115811 (2014)

    Article  Google Scholar 

  35. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D. Appl. Phys. 46(6), 065308 (2013)

    Article  Google Scholar 

  36. Y.-M. Li, W. Chen, J. Zhou, Q. Xu, X.-Y. Gu, R.-H. Liao, Physica B 365(1-4), 76–81 (2005)

    Article  Google Scholar 

  37. A.K. Jonscher, The universe dielectric response. Nature 267(5613), 673–679 (1977)

    Article  Google Scholar 

  38. J. Ha’nderek, Z. Ujma, C. Carabatos-Nedelec, G.E. Kugel, D. Dmytr’ow, I. El-Harrad, J. Appl. Phys. 73, 367–373 (1993)

    Article  Google Scholar 

  39. Z. Ujma, M. Adamczyk, J. Ha’nderek, J. Europ. Ceram. Soc. 18(14), 2201–2008 (1998)

    Article  Google Scholar 

  40. P. Braunlich, Topics in Appl. Phys. 37, 35–91 (1979)

    Article  Google Scholar 

  41. M. Adamczyk, L. Kozeilski, A.N.D.M. Pilch, Ferroelectrics 417(1), 1–8 (2011)

    Article  Google Scholar 

  42. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Phys. Scr. 86(2), 025705 (2012)

    Article  Google Scholar 

  43. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Mater. Sci. Mater. Electron. 26, 6572–6584 (2015)

    Article  Google Scholar 

  44. A.K. Jonscher, Dielectricrelaxationinsolids, Nature (London) 267 (1977), 673–679

  45. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13 (1972)

  46. D.K. Mahato, A. Dutta, T.P. Sinha, Phys. B 406(13), 2703–2708 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunanda K. Patri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patri, S.K., Deepti, P.L., Choudhary, R.N.P. et al. Dielectric, impedance and modulus spectroscopy of BaBi2Nb2O9. J Electroceram 40, 338–346 (2018). https://doi.org/10.1007/s10832-018-0135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0135-0

Keywords

Navigation