Skip to main content
Log in

Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High temperature superconductor Yttrium Barium Copper Oxide (YBCO) was successfully prepared by modified thermal decomposition and thermal treatment method. Both samples in that methods sintered at 980 °C and were investigate by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and R-T measurement. From XRD analysis, it was confirmed that Yttrium Barium Copper Oxide, YBa2Cu3O7-ẟ (Y-123) acts as primary phase with orthorhombic crystal structure and Pmmm space group while Diyttrium Barium Copper Oxide, Y2BaCuO5 (Y-211) and Barium Copper Oxide (BaCuO2) belong to the secondary phases. The microstructure analysis showed that the average grain size of modified thermal decomposition (TD) method (3.6559 μm) was bigger compared with thermal treatment (TT) method (1.7766 μm). The sample exhibited metallic behavior and the critical temperature, Tc-onset was increased as modified thermal decomposition (TD) method was applied. Based on the results obtained, the modified thermal decomposition (TD) method exhibited superior performance compared to the thermal treatment (TT) in terms of the physical properties which includes microstructure, phase formation and critical temperature Tc of Y-123.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D.W. Hazelton, V. Selvamanickam, Superpower’s YBCO coated high-temperature superconducting (HTS) wire and magnet applications. Proc. IEEE 97, 1831–1836 (2009). https://doi.org/10.1109/JPROC.2009.2030239

    Article  Google Scholar 

  2. M. Ono, S. Koga, H. Ohtsuki, Japan’s superconducting Maglev train. IEEE Instrum. Meas. Mag. 5, 9–15 (2002). https://doi.org/10.1109/5289.988732

    Article  Google Scholar 

  3. H.W. Lee, K.C. Kim, J. Lee, Review of Maglev train technologies. IEEE Trans. Magn. 42, 1917–1925 (2006). https://doi.org/10.1109/TMAG.2006.875842

    Article  ADS  Google Scholar 

  4. X. Zhang, Y. Song, D. Zhou, T. Li, X. Wang, H. Huang et al., Influence of Ag doping on thermal conductivity and magnetic levitation of single grain YBCO superconductors for high-temperature superconducting Maglev. Cryogenics (Guildf) 137, 103774 (2024). https://doi.org/10.1016/j.cryogenics.2023.103774

    Article  Google Scholar 

  5. M.P. Paranthaman, T. Izumi, High-performance YBCO-coated superconductor wires. MRS Bull. 29, 533–541 (2004)

    Article  Google Scholar 

  6. A. Sarkar, V.S. Dang, P. Mikheenko, M.M.A. Kechik, J.S. Abell, A. Crisan, Improved critical current densities in thick YBa2Cu3O7-δ multilayer films interspaced with non-superconducting YBa2Cu3Ox nanodots. Thin Solid Films 519, 876–879 (2010). https://doi.org/10.1016/j.tsf.2010.08.102

    Article  ADS  Google Scholar 

  7. A. Abdul Hussein, A. Abdul Hussein, N. Hasan, Study of the properties of YBCO superconductor compound in various preparation methods: a short review. J. Appl. Sci. Nanotechnol. 3, 65–79 (2023). https://doi.org/10.53293/jasn.2022.4867.1156

    Article  Google Scholar 

  8. Bhatt RM, YBCO superconductors and a comparative study on scattering strengths, in International Conference on Advanced Computing and Communication Technologies (ACCT, 2013), p. 195–8. https://doi.org/10.1109/ACCT.2013.10

  9. T.S. Chin, T.W. Huang, W.T. Lin, N.C. Wu, Y.H. Chou, T.C. Wu et al., The formation OF Y-Ba-Cu-O phases during solid state reaction. Mater. Res. Soc. 99, 6–6 (1988)

    Google Scholar 

  10. A.N. Kamarudin, M.M.A. Kechik, M. Miryala, S. Pinmangkorn, M. Murakami, S.K. Chen et al., Microstructural, phase formation, and superconducting properties of bulk YBa2Cu3O7 superconductors grown by infiltration growth process utilizing the YBa2Cu3Oy+ ErBa2Cu3Oy + Ba2Cu3Oy as a liquid source. Coatings (2021). https://doi.org/10.3390/coatings11040377

    Article  Google Scholar 

  11. S.E. Jasim, M.A. Jusoh, M. Hafiz, R. Jose, Fabrication of superconducting YBCO nanoparticles by electrospinning. Procedia Eng. 148, 243–248 (2016). https://doi.org/10.1016/j.proeng.2016.06.595

    Article  Google Scholar 

  12. A. Arlina, S.A. Halim, M.M.A. Kechik, S.K. Chen, Superconductivity in Bi-Pb-Sr-Ca-Cu-O ceramics with YBCO as additive. J. Alloys Compd. 645, 269–273 (2015). https://doi.org/10.1016/j.jallcom.2015.04.133

    Article  Google Scholar 

  13. A. Bahboh, A.H. Shaari, H. Baqiah, S.K. Chen, M.M.A. Kechik, Z.A. Talib et al., Effect of sol-gel synthesized BiFeO3 nanoparticle addition in YBa2Cu3O7-δ (Y123) superconductor synthesized by standard solid state reaction method. Solid State Phenom. 290 SSP, 245–251 (2019). https://doi.org/10.4028/www.scientific.net/SSP.290.245

    Article  Google Scholar 

  14. N. Hasan, H. Hafeath, A. Ahmed, Synthesis and characterization of the bulk YBCO-target of superconducting material. Mater. Today Proc. 42, 2268–2272 (2021). https://doi.org/10.1016/J.MATPR.2020.12.314

    Article  Google Scholar 

  15. N.A. Khalid, M.M.A. Kechik, N.A. Baharuddin, S.K. Chen, H. Baqiah, L.K. Pah et al., Carbon nanofibers addition on transport and superconducting properties of bulk YBa2Cu3O7-δ material prepared via co-precipitation. J. Mater. Sci. Mater. Electron. 31, 16983–16990 (2020). https://doi.org/10.1007/s10854-020-04255-0

    Article  Google Scholar 

  16. I. Schildermans, M. Van Bael, E. Knaepen, J. Yperman, J. Mullens, L.C. Van Poucke, Synthesis of the high temperature superconductor YBa2Cu3O7-δ by the hydroxide co-precipitation method. Phys. C Superconduct. Appl. 278, 55–61 (1997). https://doi.org/10.1016/S0921-4534(97)00105-6

    Article  ADS  Google Scholar 

  17. A.N. Kamarudin, M.M.A. Kechik, S.N. Abdullah, H. Baqiah, S.K. Chen, M.K. Abdul Karim et al., Effect of graphene nanoparticles addition on superconductivity of YBa2Cu3O7-δ synthesized via the thermal treatment method. Coatings 12, 91 (2022)

    Article  Google Scholar 

  18. M.M. Dihom, A.H. Shaari, H. Baqiah, N.M. Al-Hada, S.K. Chen, R.S. Azis et al., Microstructure and superconducting properties of Ca substituted Y(Ba1−xCax)2Cu3O7−δ ceramics prepared by thermal treatment method. Results Phys. 7, 407–412 (2017). https://doi.org/10.1016/j.rinp.2016.11.067

    Article  ADS  Google Scholar 

  19. N.N.M. Yusuf, M.M.A. Kechik, H. Baqiah, S.K. Chen, L.K. Pah, A.H. Shaari et al., Structural and superconducting properties of thermal treatment-synthesised bulk YBa2Cu3O7-δ superconductor: effect of addition of SnO2 nanoparticles. Materials 12, 6–15 (2019). https://doi.org/10.3390/ma12010092

    Article  Google Scholar 

  20. M.M. Dihom, A.H. Shaari, H. Baqiah, N.M. Al-Hada, S.K. Chen, R.S. Azis et al., Effects of calcination temperature on microstructure and superconducting properties of Y123 ceramic prepared using thermal treatment method. Solid State Phenom. 268 SSP, 325–329 (2017). https://doi.org/10.4028/www.scientific.net/SSP.268.325

    Article  Google Scholar 

  21. M.M. Dihom, A.H. Shaari, H. Baqiah, S.K. Chen, R.S. Azis, R. Abd-Shukor et al., Calcium-substituted Y3Ba5Cu8O18 ceramics synthesized via thermal treatment method: structural and superconducting properties. J. Supercond. Nov. Magn. 32, 1875–1883 (2019). https://doi.org/10.1007/S10948-018-4905-3/FIGURES/6

    Article  Google Scholar 

  22. M.M. Dihom, A.H. Shaari, H. Baqiah, N. Mohammed Al-Hada, Z.A. Talib, S.K. Chen et al., Structural and superconducting properties of Y(Ba1-xKx)2Cu3O7-δ ceramics. Ceram. Int. 43, 11339–11344 (2017). https://doi.org/10.1016/j.ceramint.2017.05.339

    Article  Google Scholar 

  23. P.J. Lee, E. Saion, N.M. Al-Hada, N. Soltani, A simple up-scalable thermal treatment method for synthesis of ZnO nanoparticles. Metals 5, 2383–2392 (2015). https://doi.org/10.3390/met5042383

    Article  Google Scholar 

  24. A. Salem, E. Saion, N.M. Al-Hada, H. Mohamed Kamari, A.H. Shaari, C.A.C. Abdullah et al., Synthesis and characterization of CdSe nanoparticles via thermal treatment technique. Results Phys. 7, 1556–1562 (2017). https://doi.org/10.1016/j.rinp.2017.04.026

    Article  ADS  Google Scholar 

  25. N.M. Al-Hada, E. Saion, Z.A. Talib, A.H. Shaari, The impact of polyvinylpyrrolidone on properties of cadmium oxide semiconductor nanoparticles manufactured by heat treatment technique. Polymers (2016). https://doi.org/10.3390/polym8040113

    Article  Google Scholar 

  26. Y. Sadaoka, K. Watanabe, Y. Sakai, M. Sakamoto, Preparation of perovskite-type oxides by thermal decomposition of heteronuclear complexes, {Ln[Fe(CN)6nH2O}x, (Ln = La ∼ Ho). J. Alloy. Compd. 224, 194–198 (1995). https://doi.org/10.1016/0925-8388(95)01531-0

    Article  Google Scholar 

  27. Y. Sadaoka, E. Traversa, M. Sakamoto, Preparation and structural characterization of perovskite-type LaxLn″1-xCoO3 by the thermal decomposition of heteronuclear complexes, LaxLn″1-x[Co(CN)6] · nH2O (Ln″ = Sm and Ho). J. Alloy. Compd. 240, 51–59 (1996). https://doi.org/10.1016/0925-8388(96)02300-6

    Article  Google Scholar 

  28. R. Al-Gaashani, S. Radiman, N. Tabet, D.A. Razak, Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method. J. Alloy. Compd. 509, 8761–8769 (2011). https://doi.org/10.1016/j.jallcom.2011.06.056

    Article  Google Scholar 

  29. R. Al-Gaashani, B. Aïssa, M. Anower Hossain, S. Radiman, Catalyst-free synthesis of ZnO-CuO-ZnFe2O4 nanocomposites by a rapid one-step thermal decomposition approach. Mater. Sci. Semiconduct. Process. 90, 41–49 (2019). https://doi.org/10.1016/j.mssp.2018.10.004

    Article  Google Scholar 

  30. G.G. Condorelli, G. Malandrino, I. Fragalà, Metal-organic chemical vapor deposition of copper-containing phases: kinetics and reaction mechanisms. Chem. Mater. 6, 1861–1866 (1994). https://doi.org/10.1021/cm00046a048

    Article  Google Scholar 

  31. R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, A. Stephen, Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Mater Charact 67, 10–16 (2012). https://doi.org/10.1016/j.matchar.2012.02.015

    Article  Google Scholar 

  32. E. Darezereshki, F. Bakhtiari, M. Alizadeh, A. Behrad Vakylabad, M. Ranjbar, Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater. Sci. Semicond. Process. 15, 91–97 (2012). https://doi.org/10.1016/j.mssp.2011.09.009

    Article  Google Scholar 

  33. C.J. Zhang, H. Oyanagi, The synthesis condition and its influence on Tc in Mn doped La1.85Sr0.15CuO4. Phys. C 468, 1155–1158 (2008). https://doi.org/10.1016/j.physc.2008.05.021

    Article  ADS  Google Scholar 

  34. T.W. Huang, N.C. Wu, Y.H. Chou, W.T. Un, T.C. Wu, T.S. Chin, The formation of superconducting YBa2Cu3O7-x through solid state reaction. J. Cryst. Growth 91, 402–409 (1988)

    Article  ADS  Google Scholar 

  35. R. Giri, V.P.S. Awana, H.K. Singh, R.S. Tiwari, O.N. Srivastava, A. Gupta et al., Effect of Ca doping for Y on structural/microstructural and superconducting properties of YBa2Cu3O7-δ. Phys. C Superconduct. Appl. 419, 101–108 (2005). https://doi.org/10.1016/j.physc.2005.01.002

    Article  ADS  Google Scholar 

  36. A. Ramli, A.H. Shaari, H. Baqiah, C.S. Kean, M.M.A. Kechik, Z.A. Talib, Role of Nd2O3 nanoparticles addition on microstructural and superconducting properties of YBa2Cu3O7-δ ceramics. J. Rare Earths 34, 895–900 (2016). https://doi.org/10.1016/S1002-0721(16)60112-6

    Article  Google Scholar 

  37. S.A. Hassanzadeh-tabrizi, M. Mazaheri, M. Aminzare, S.K. Sadrnezhaad, Reverse precipitation synthesis and characterization of CeO2 nanopowder. J. Alloy. Compd. 491, 499–502 (2010). https://doi.org/10.1016/j.jallcom.2009.10.243

    Article  Google Scholar 

  38. P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269, 625–629 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.082

    Article  ADS  Google Scholar 

  39. K. Grigorov, V. Tsaneva, A. Spasov, W. Matz, R. Groetzschel, H. Reuther, RBS and ion channelling study of YBCO/STO and YBCO/LSMO/STO structures. Oxygen content estimated by X-ray diffraction. Vacuum 69, 315–319 (2002). https://doi.org/10.1016/S0042-207X(02)00351-2

    Article  ADS  Google Scholar 

  40. A.R. Hamoudi, A. May, A. Henniche, J.H. Ouyang, A. Guillet, A comparative study of (Ce) and (Gd) doping influence on the superconducting properties of YBCO ceramics. Ceram. Int. 47, 25314–25323 (2021). https://doi.org/10.1016/j.ceramint.2021.05.253

    Article  Google Scholar 

  41. A. Sotelo, P. Majewski, H.S. Park, F. Aldinger, Synthesis of highly pure Bi-2223 ceramics using defined precursors. Phys. C Superconduct. Appl. 272, 115–124 (1996). https://doi.org/10.1016/S09214534(96)005734

    Article  ADS  Google Scholar 

  42. H.Y. Wu, K.Q. Ruan, J. Yin, S.L. Huang, Z.M. Lv, M. Li et al., Effect of K and Nd substitutions on superconductivity of Bi2223 superconductors. Supercond. Sci. Technol. 20, 1189–1192 (2007). https://doi.org/10.1088/0953-2048/20/12/019

    Article  ADS  Google Scholar 

  43. B. Abba, A. Mukhtar, A. Sabiu, Determination of YBCO superconductor critical temperature and its voltage-current characteristics using four-point probe method. Dutse J. Pure Appl. Sci. 5, 154–160 (2019)

    Google Scholar 

  44. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Structural and physical properties of Sm-doped Bi1.6Pb 0.4Sr2Ca2-xSmxCu3Oy superconductors. Phys. C Superconduct. Appl. 423, 119–126 (2005). https://doi.org/10.1016/j.physc.2005.04.008

    Article  ADS  Google Scholar 

  45. N.J. Azman, H. Abdullah, R. Abd-Shukor, Effect of nanosized NiF2 addition on the transport critical current density of Ag-sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor tapes. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/146476

    Article  Google Scholar 

  46. H. Azhana, J.S. Hawab, C.M.N. Azurab, K. Azmana, S.A. Syamsyir, Structural and electrical properties of high and low-density Yb-doped Bi(Pb)-2223 superconductor. J. Teknol. 6, 7–12 (2016)

    Google Scholar 

  47. S. Alikhanzadeh-Arani, M. Salavati-Niasari, M. Almasi-Kashi, Influence of the utilized precursors on the morphology and properties of YBa2Cu3O7-y superconducting nanostructures. Phys. C Superconduct. Appl. 488, 30–34 (2013). https://doi.org/10.1016/j.physc.2013.02.007

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Higher Education (MOHE) under FRGS Grant no. FRGS/1/2020/STG07/UPM/02/4 and this paper was partly supported by Japan Science and Technology Agency (JST) for advanced Project Based Learning (aPBL), Shibaura Institute of Technology (SIT) under Top Global University Project, Designed by Ministry of Education, Culture, Sports, and Science & Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Mustafa Awang Kechik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, N.A.M.I.A., Kechik, M.M.A., Kien, C.S. et al. Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method. Appl. Phys. A 130, 340 (2024). https://doi.org/10.1007/s00339-024-07412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07412-y

Keywords

Navigation