Skip to main content
Log in

Effect of oxygen content on wettability, microstructure and solderability of Au–20Sn solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to understand the reliability relationship between solderability and oxygen content which on the surface of Au–20Sn solders, the wettability, microstructure and solderability of Au–20Sn solders with different oxygen content have been investigated in this study. Results showed that oxygen content significantly influence the wettability of Au–20Sn solders because of oxide films, and the worst wettability was achieved by containing 102 ppm oxygen with spreading area reducing to 52.3 mm2, which was about 45.8% smaller than that of the solder contained 16 ppm oxygen. In addition, the flux provided a good wetting behavior of Au–20Sn solders when the oxygen content was relatively high. The main oxide films on the surface of Au–20Sn solders were verified that composed of SnO and SnO2 by way of X-ray diffractometer determination, and the reason for the formation of surface oxides has been briefly analyzed and discussed. Meanwhile, the microstructure displayed varying degree deterioration with the increase of oxygen content, and the surface oxide started to be appeared in Au–20Sn solders when the oxygen content reached 42 ppm. On the other hand, the increase of oxygen content would induce pores and cracks of soldered joints, which may finally deteriorate the reliability, and the solderability of solders on Cu substrate indicated that the oxygen content is preferably less than 20 ppm when Au–20Sn solders are used for fluxless bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Peng, R.C. Wang, M. Wang, H.S. Liu, J. Electron. Mater. 46, 2021 (2017)

    Article  CAS  Google Scholar 

  2. H.M. Chung, C.H. Chen, C.P. Lin, C.J. Chen, J. Alloys Compd. 485, 219 (2009)

    Article  CAS  Google Scholar 

  3. J.Y. Tsai, C.W. Chang, C.E. Ho, Y.L. Lin, C.R. Kao, J. Electron. Mater. 35, 65 (2006)

    Article  CAS  Google Scholar 

  4. J.W. Yoon, H.S. Chun, S.B. Jung, J. Mater. Res. 22, 1219 (2007)

    Article  CAS  Google Scholar 

  5. Y.T. Lai, C.Y. Liu, J. Electron. Mater. 35, 28 (2006)

    Article  CAS  Google Scholar 

  6. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340 (2016)

    Article  CAS  Google Scholar 

  7. P.J. Wang, J.S. Kim, C.C. Lee, J. Electron. Mater. 38, 2106 (2009)

    Article  CAS  Google Scholar 

  8. J. Jiang, J.E. Lee, K.S. Kim, K. Suganuma, J. Alloys Compd. 462, 244 (2008)

    Article  CAS  Google Scholar 

  9. M. Yunus, K. Srihari, J.M. Pitarresi, P. Anthony, Microelectron. Reliab. 43, 2077 (2003)

    Article  Google Scholar 

  10. J. Lee, K. Tanaka, M. Yamamoto, H. Shigeta, Mater. Trans. 45, 625 (2004)

    Article  CAS  Google Scholar 

  11. J. Kim, H. Schoeller, J. Cho, P. Seungbae, J. Electron. Mater. 37, 483 (2008)

    Article  CAS  Google Scholar 

  12. J.F. Kuhmann, A. Preuss, B. Adolphi, K. Maly, T. Wirth, W. Oesterle, W. Pittroff, G. Weyer, M. Fanciulli, IEEE Trans. Compon. Packag. Manuf. Technol. C 21, 134 (1998)

    Article  Google Scholar 

  13. S.S. Zhang, Y.J. Zhang, H.W. Wang, J. Alloys Compd. 487, 682 (2009)

    Article  CAS  Google Scholar 

  14. S.P. Yu, C.L. Liao, M.H. Hon, J. Mater. Sci. 35, 4217 (2000)

    Article  CAS  Google Scholar 

  15. J.W. Yoon, H.S. Chun, J.M. Koo, S.B. Jung, Microsyst. Technol. 13, 1463 (2007)

    Article  CAS  Google Scholar 

  16. J. Zhao, Q. Yuan, X. Kan, J.L. Yang, F.H. Yang, J. Micromech. Microeng. 27, 014003 (2016)

    Article  Google Scholar 

  17. GB/T 11364-2008. China Standard Press (2008)

  18. T. Farrell, Met. Sci. 10, 87 (1976)

    Article  CAS  Google Scholar 

  19. Y.C. Chan, D.J. Xie, J.K.L. Lai, Mater. Sci. Eng. B 38, 53 (1996)

    Article  Google Scholar 

  20. M.F. Arenas, M. He, V.L. Acoff, J. Electron. Mater. 35, 1530 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 51675269), the State Key Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering), China (Grant No. SKLABFMT201704) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xue, S. & Liu, H. Effect of oxygen content on wettability, microstructure and solderability of Au–20Sn solders. J Mater Sci: Mater Electron 29, 21130–21137 (2018). https://doi.org/10.1007/s10854-018-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0261-0

Navigation